一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)判定警车在加速阶段能否追上货车?(要求通过计算说明)(3)警车发动后要多长时间才能追上货车?
(16分)如图所示,在坐标系的第一、四象限存在一宽度为a、垂直纸面向外的有界匀强磁场,磁感应强度的大小为B;在第三象限存在与y轴正方向成θ=60°角的匀强电场。一个粒子源能释放质量为m、电荷量为+q的粒子,粒子的初速度可以忽略。粒子源在点P(,)时发出的粒子恰好垂直磁场边界EF射出;将粒子源沿直线PO移动到Q点时,所发出的粒子恰好不能从EF射出。不计粒子的重力及粒子间相互作用力。求: ⑴匀强电场的电场强度; ⑵PQ的长度; ⑶若仅将电场方向沿顺时针方向转动60º角,粒子源仍在PQ间移动并释放粒子,试判断这些粒子第一次从哪个边界射出磁场并确定射出点的纵坐标范围。
(16分)在竖直平面内固定一轨道ABCO, AB段水平放置,长为4 m,BCO段弯曲且光滑,轨道在O点的曲率半径为1.5 m;一质量为1.0 kg、可视作质点的圆环套在轨道上,圆环与轨道AB段间的动摩擦因数为0.5。建立如图所示的直角坐标系,圆环在沿x轴正方向的恒力F作用下,从A(-7,2)点由静止开始运动,到达原点O时撤去恒力F,水平飞出后经过D(6,3)点。重力加速度g取10m/s2,不计空气阻力。求: ⑴圆环到达O点时对轨道的压力; ⑵恒力F的大小; ⑶圆环在AB段运动的时间。
(15分) 如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ, N、Q两点间接有阻值为R的电阻。整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m、阻值也为R的金属杆ab垂直放在导轨上,杆ab由静止释放,下滑距离x时达到最大速度。重力加速度为g,导轨电阻不计,杆与导轨接触良好。求: ⑴杆ab下滑的最大加速度; ⑵杆ab下滑的最大速度; ⑶上述过程中,杆上产生的热量。
如图所示,质量为2m的小滑块P和质量为m的小滑块Q都视作质点,与轻质弹簧相连的Q静止在光滑水平面上。P以某一初速度v向Q运动并与弹簧发生碰撞,问: ①弹簧的弹性势能最大时,P、Q的速度各为多大? ②弹簧的最大弹性势能是多少?
如图所示,一透明介质制成的直角三棱镜,顶角∠A=30°,一束光由真空垂直射向AC面,经AB面射出后的光线偏离原来方向15°。已知光在真空中的传播速度为c。求: ①该介质对光的折射率; ②光在介质中的传播速度。