(文)已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线 相切.(1)求圆的标准方程;(2)设直线与圆相交于两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得弦的垂直平分线过点,
(本题8分)设,求证:
(本小题满分14分)已知,函数.(1)若函数在区间内是减函数,求实数的取值范围;(2)求函数在区间上的最小值;(3)对(2)中的,若关于的方程有两个不相等的实数解,求实数的取值范围.
(本小题满分14分)若椭圆:的离心率等于,抛物线:的焦点在椭圆的顶点上。(Ⅰ)求抛物线的方程;(Ⅱ)求的直线与抛物线交、两点,又过、作抛物线的切线、,当时,求直线的方程;
(本小题满分14分)数列是递增的等比数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)若,求证数列是等差数列;(Ⅲ)若……,求的最大值.
(本小题满分14分)如图,正四棱柱中,,点在上且.(1) 证明:平面;(2) 求二面角的余弦值.