在水平地面上竖直固定一根内壁光滑的圆管,管的半径R=3.6m(管的内径大小可以忽略),管的出口A在圆心的正上方,入口B与圆心的连线与竖直方向成60°角,如图所示.现有一只质量m=1kg的小球(可视为质点)从某点P以一定的初速度水平抛出,恰好从管口B处沿切线方向飞入,小球到达A时恰好与管壁无作用力.取g=10m/s2.求:(1)小球到达圆管最高点A时的速度大小;(2)小球在管的最低点C时,管壁对小球的弹力大小;(3)小球抛出点P到管口B的水平距离x.
如图所示,一足够长的固定斜面倾角,两物块A、B的质量分别为、分别为1kg和4kg,它们与斜面之间的动摩擦因数均为。两物块之间的轻绳长,轻绳承受的最大张力T=12N,作用于B上沿斜面向上的力F逐渐增大,使A、B一起由静止开始沿斜面向上运动,。(,)⑴某一时刻轻绳被拉断,求此时外力F的大小;⑵若轻绳拉断前瞬间A、B的速度为3m/s,绳断后保持外力F不变,求当A运动到最高点时,A、B之间的距离。
如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着方向沿y轴负方向的匀强电场.初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,经磁场偏转后过y轴上的P点且垂直y轴进入电场区域,在电场中偏转并击中x轴上的C点.已知OA=OC=d.求电场强度E和磁感应强度B的大小(粒子的重力不计).
(18分)竖直平行放置的两个金属板A、K连在如图所示的电路中.电源电动势E=" 91" V,内阻r=1Ω,定值电阻R1=l0,滑动变阻器R2的最大阻值为80, S1、S2为A、K板上的两个小孔,S1与S2的连线水平,在K板的右侧有一个水平方向的匀强磁场,磁感应强度大小为B="0." 10 T,方向垂直纸面向外.另有一水平放置的足够长的荧光屏D,如图H=0.2m.电量与质量之比为2.0×l05C/kg的带正电粒子由S1进入电场后,通过S2向磁场中心射去,通过磁场后打到荧光屏D上.粒子进入电场的初速度、重力均可忽略不计.(1)两个金属板A、K各带什么电?(2)如果粒子垂直打在荧光屏D上,求粒子在磁场中运动的时间和电压表的示数为多大?(结果保留两位有效数字)(3)调节滑动变阻器滑片P的位置,当滑片到最左端时,通过计算确定粒子能否打到荧光屏?.
如图所示,固定点O上系一长L =" 0.6" m的细绳,细绳的下端系一质量m =" 1.0" kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h =" 0.80" m,一质量M =" 2.0" kg的物块开始静止在平台上的P点,现对M施予一水平向右的初速度V0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于摆球的重力,而M落在水平地面上的C点,其水平位移S =" 1.2" m,不计空气阻力,g ="10" m/s2 ,求:(1)求物块M碰撞后的速度。(2)若平台表面与物块间动摩擦因数μ=0.5,物块M与小球的初始距离为S1=1.3m,物块M在P处的初速度大小为多少?
(12分)如图(a)所示,间距为l、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l,在t=tx时刻(tx未知)ab棒恰进入区域Ⅱ,重力加速度为g。求:(1)通过cd棒电流的方向和区域I内磁场的方向;(2)当ab棒在区域Ⅱ内运动时,cd棒消耗的电功率;(3)ab棒开始下滑的位置离EF的距离;(4)ab棒开始下滑至EF的过程中回路中产生的热量。