如图乙,一质量为m的平板车左端放有质量为M的小滑块,滑块与平板车之间的动摩擦因数为μ。开始时,平板车和滑块共同以速度v0沿光滑水平面向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短,且碰撞后平板车速度大小保持不变,但方向与原来相反。平板车足够长,以至滑块不会滑出平板车右端,重力加速度为g。求:①平板车第一次与墙壁碰撞后再次与滑块速度相同时两者的共同速度;②平板车第一次与墙壁碰撞后再次与滑块速度相同时,平板车右端距墙壁的距离。
有一小船正在渡河,如图所示.在离对岸30 m时,其下游40 m处有一危险水域.假若水流速度为5 m/s,为了使小船在危险水域之前到达对岸,则小船从现在起相对于静水的最小速度应是多大?
如图所示,有一条渡船正在渡河,河宽为300 m,渡船在静水中的速度是v1=3 m/s,水的流速是v2=1 m/s,求下列条件渡船过河的时间. (1)以最短的时间过河; (2)以最短的位移过河.
有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示.弹簧的一端固定于轴O上,另一端挂一质量为m的物体A,物体与盘面间的动摩擦因数为μ.开始时弹簧未发生形变,长度为R.求: (1)盘的转速n0多大时,物体A开始滑动? (2)当转速达到2n0时,弹簧的伸长量Δx是多少?
如图所示,一光滑的半径为R的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,对轨道的压力恰好为零,则小球落地点C距A处多远?
如图甲,PNQ为竖直放置的半径为0.1m的半圆形轨道,在轨道的最低点P和最高点Q各安装了一个压力传感器,可测定小球在轨道内侧,通过这两点时对轨道的压力FP和FQ.轨道的下端与一光滑水平轨道相切,水平轨道上有一质量为0.06kg的小球A,以不同的初速度与静止在轨道最低点P处稍右侧的另一质量为0.04kg的小球B发生碰撞,碰后形成一整体(记为小球C)以共同速度v冲入PNQ轨道.(A、B、C三小球均可视为质点,g取10m/s2) (1)若FP和FQ的关系图线如图乙所示,求:当 FP="13N" 时所对应的入射小球A的初速度为多大? (2)当FP=13N时,AB所组成的系统从A球开始向左运动到整体达到轨道最高点Q全过程中所损失的总机械能为多少? (3)若轨道PNQ光滑,小球C均能通过Q点.试推导FP随FQ变化的关系式,并在图丙中画出其图线.