如图所示,平面直角坐标系的y轴竖直向上,x轴上的P点与Q点关于坐标原点O对称,距离为2a。有一簇质量为m、带电量为+q的带电微粒,在xoy平面内,从P点以相同的速率斜向右上方的各个方向射出(即与x轴正方向的夹角θ,0°<θ<90°),经过某一个垂直于xoy平面向外、磁感应强度大小为B的有界匀强磁场区域后,最终会聚到Q点,这些微粒的运动轨迹关于y轴对称。为使微粒的速率保持不变,需要在微粒的运动空间再施加一个匀强电场。重力加速度为g。求:
(1)匀强电场场强E的大小和方向;
(2)若一个与x轴正方向成30°角射出的微粒在磁场中运动的轨道半径也为a,求微粒从P点运动到Q点的时间t;
(3)若微粒从P点射出时的速率为v,试推导微粒在x>0的区域中飞出磁场的位置坐标x与y之间的关系式。