如图甲所示,A、B两块金属板水平放置,相距为d="0." 6 cm,两板间加有一周期性变化的电压,当B板接地()时,A板电势,随时间变化的情况如图乙所示.现有一带负电的微粒在t=0时刻从B板中央小孔射入电场,若该带电微粒受到的电场力为重力的两倍,且射入电场时初速度可忽略不计.求:(1)在0~和~T这两段时间内微粒的加速度大小和方向;(2)要使该微粒不与A板相碰,所加电压的周期最长为多少(g="10" m/s2).
甲、乙两车在公路上沿同一方向做直线运动,甲车在后,乙在前。在t=0时,甲车在A点,乙车在B点,A、B的距离x0=195m处,它们的v-t图象如图所示。求:(1)甲车停下的地方到B点的距离;(2)甲、乙两车相遇的时间;(3)甲、乙两车相遇的地点到A点的距离。
如图所示,MNPQ是一块截面为正方形的玻璃砖,其边长MN="30" cm。一束激光AB射到玻璃砖的MQ面上(入射点为B)进入玻璃砖后在QP面上的F点(图中未画出)发生全反射,恰沿DC方向射出。其中B为MQ的中点,∠ABM=30°,PD="7.5" cm,∠CDN=30°。(i)画出激光束在玻璃砖内的光路示意图,求出QP面上的反射点F到Q点的距离QF;(ii)求出该玻璃砖的折射率;
实验室获得的某种理想气体的状态变化过程如图的p—T图象,在B状态时气体体积为VB=6L。(i)气体在状态A的压强;(ii)气体在状态C的体积。
在平面直角坐标系中,的区域存在着电场强度大小均为E的匀强电场,的部分电场沿x轴正向,的区域电场沿x轴负向。的区域存在一个矩形的垂直纸面向外的匀强磁场,磁感应强度大小为B。一个电荷量为q的正电荷从靠近y轴的第一象限内M点沿y轴负方向以初速度开始运动,恰好从N点进入磁场。已知电荷质量为m且不计重力,OM=2ON。(1)N点坐标;(2)若粒子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该粒子由M点出发返回到无限靠近M点所需的时间。
冬季有一种雪上“府式冰撬”滑溜运动,运动员从起跑线推着冰撬加速一段相同距离,再跳上冰撬自由滑行,滑行距离最远者获胜,运动过程可简化为如图所示的模型,某一质量m="20" kg的冰撬静止在水平雪面上的A处,现质量M=60kg的运动员,用与水平方向成α=37°角的恒力F="200" N斜向下推动冰撬,使其沿AP方向一起做直线运动,当冰撬到达P点时运动员迅速跳上冰撬与冰撬一起运动(运动员跳上冰撬瞬间,运动员和冰撬的速度不变)。已知冰撬从A运动到P的运动时间为2s,冰撬与雪面间的动摩擦因数为0.2,不计冰撬长度和空气阻力。(g取10 m/s2,cos 37°=0.8)求:(1)AP的距离;(2)冰撬从P点开始还能继续滑行多远?