一个平板小车置于光滑水平面上,其右端恰好和一个1/4光滑圆弧轨道AB的底端等高对接,如图所示。已知小车质量M=2kg,小车足够长,圆弧轨道半径R=0.8m。现将一质量m=0.5kg的小滑块,由轨道顶端A点无初速释放,滑块滑到B端后冲上小车。滑块与小车上表面间的动摩擦因数μ=0.2,g取10m/s2。求:(1)滑块到达B端时,速度为多少?对轨道的压力多大?(2)经多长的时间物块与小车相对静止?(3)小车运动2s时,小车右端距轨道B端的距离。
小物块A的质量为m,物块与坡道间的动摩擦因数为μ,水平面光滑;坡道顶端距水平面高度为h,倾角为θ;物块从坡道进入水平滑道时,在底端O点处无机械能损失,重力加速度为g,将轻弹簧的一端连接在水平滑道M处并固定在墙上,另一自由端恰位于坡道的底端O点,如图所示.物块A从坡顶由静止滑下,求: (1)物块滑到O点时的速度大小; (2)弹簧为最大压缩量时的弹性势能:
滑板运动是一项陆地上的“冲浪运动”,具有很强的观赏性。如图所示,为同一竖直平面内的滑行轨道,其中段水平,、和段均为倾角37°的斜直轨道,轨道间均用小圆弧平滑相连(小圆弧的长度可忽略)。已知m,m,m,m,设滑板与轨道之间的摩擦力为它们间压力的倍(=0.25),运动员连同滑板的总质量="60" kg。运动员从点由静止开始下滑从点水平飞出,在上着陆后,经短暂的缓冲动作后保留沿斜面方向的分速度下滑,接着在轨道上来回滑行,除缓冲外运动员连同滑板可视为质点,忽略空气阻力,取="10" m/s2,sin37°=0.6,cos37°=0.8。求: (1)运动员从点水平飞出时的速度大小; (2)运动员在上着陆时,沿斜面方向的分速度大小; (3)设运动员第一次和第四次滑上轨道时上升的最大高度分别为和,则等于多少?
如图所示,A、B两个矩形木块用轻弹簧相接静止在水平地面上,弹簧的劲度系数为k,木块A和木块B的质量均为m。 (1)若用力将木块A缓慢地竖直向上提起,木块A向上提起多大高度时,木块B将离开水平地面. (2)若弹簧的劲度系数k是未知的,将一物体C从A的正上方某位置处无初速释放,C与A相碰后立即粘在一起(不再分离)向下运动,它们到达最低点后又向上运动.已知C的质量为m时,把它从距A高为H处释放,则最终能使B刚好离开地面.若C的质量为,要使B始终不离开地面,则释放时,C距A的高度h不能超过多少?
如图是建筑工地上常用的一种“深穴打夯机”示意图,电动机带动两个滚轮匀速转动将夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,夯杆在自身重力作用下,落回深坑,夯实坑底.然后两个滚轮再次压紧,夯杆被提上来,如此周而复始.已知两个滚轮边缘的线速度恒为v=4m/s,滚轮对夯杆的正压力FN=2×104N,滚轮与夯杆间的动摩擦因数为0.3,夯杆质量m=1×103kg,坑深h=6.4m,假定在打夯的过程中坑的深度变化不大,取g=10m/s2.求: (1)在每个打夯周期中,电动机对夯杆所做的功; (2)每个打夯周期中滚轮与夯杆间因摩擦产生的热量; (3)打夯周期。
(12分)如图所示,长为2米的不可伸长的轻绳一端系于固定点O,另一端系一质量m=100g的小球,将小球从O点正下方h=0.4m处水平向右抛出,经一段时间绳被拉直,拉直绳时绳与竖直方向的夹角α=53˚,以后,小球以O为悬点在竖直平面内摆动,试求在绳被拉直的过程中,沿绳方向的合力给小球的冲量。(cos53˚=0.6,sin53˚=0.8)