某兴趣小组在研究测物块P与软垫间的动摩擦因数时,提出了一种使用刻度尺和秒表的实验方案:将软垫一部分弯折形成斜面轨道与水平轨道连接的QCE形状,并将其固定在竖直平面内,如图所示,将物块从斜面上A处由静止释放,物块沿粗糙斜面滑下,再沿粗糙水平面运动到B处静止,设物块通过连接处C时机械能不损失,重力加速度g取l0m/ s2,用秒表测得物块从A滑到B所用时间为2s,用刻度尺测得A、C间距60cm,C、B间距40cm.求:(1)物块通过C处时速度大小;(2)物块与软垫间的动摩擦因数.
如图所示,物块M和m用一不可伸长的细绳通过定滑轮连接,m放在倾角的固定光滑斜面上,而穿过竖直杆PQ的物块M可沿杆无摩擦地下滑,M=3m,开始时,将M抬高到A点,使细绳水平,此时OA段绳长为L=4.0m,现M由静止开始下滑,求:当M下滑3.0m至B点时的速度为多大?(g取10m/s2)
我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度,以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,且把月球绕地球的运动近似看做是匀速圆周运动。试求出月球绕地球运动的轨道半径。(2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h高处以速度水平抛出一个小球,小球落回到月球表面的水平距离为s。已知月球半径为,万有引力常量为。试求出月球的质量。
如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔、,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为()的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)(1)求粒子到达时的速度大小和极板距离(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。(3)若已保证了粒子未与极板相撞,为使粒子在t=2T0时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的周期。
如图所示的滑轮,它可以绕垂直于纸面的光滑固定水平轴O转动,轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m,电阻为r的金属杆.在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为Bo的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降.运动过程中金属杆始终与导轨垂直且接触良好,忽略所有摩擦,求:(1)重物匀速下降的速度v;(2)重物从释放到下降h的过程中,电阻R中产生的焦耳热QR;(3)若将重物下降h时的时刻记作t=0,速度计为v0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式).
如图a所示,一个电阻值为R=1Ω,匝数为n=100的圆形金属线与阻值为2R的电阻R1连结成闭合回路。线圈的半径为r1=12cm. 在线圈中半径为r2=10cm的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图b所示。图线与横、纵轴的截距分别为t0=10s和B0=3T. 导线的电阻不计。求0至t1=6s的时间内(a)(1)通过电阻R1上的电流大小和方向;(2)通过电阻R1上的电量q及电阻R1上产生的热量。