某一长直的赛道上,有一辆F1赛车,前方200m处有一安全车以10m/s的速度匀速前进,这时赛车从静止出发以2m/s2的加速度追赶,试求:(1)赛车何时追上安全车?追上之前与安全车最远相距是多少米?(2)当赛车刚好追上安全车时,赛车手立即刹车,使赛车以4m/s2的加速度做匀减速直线运动,问两车再经过多长时间第二次相遇?(设赛车可以从安全车旁经过而不发生相撞)
如图所示,水平放置的金属细圆环半径为0.1m,竖直放置的金属细圆柱(其半径比0.1m小得多)的端面与金属圆环的上表面在同一平面内,圆柱的细轴通过圆环的中心O,将一质量和电阻均不计的导体棒一端固定一个质量为10g的金属小球,被圆环和细圆柱端面支撑,棒的一端有一小孔套在细轴O上,固定小球的一端可绕轴线沿圆环作圆周运动,小球与圆环的摩擦因素为0.1,圆环处于磁感应强度大小为4T、方向竖直向上的恒定磁场中,金属细圆柱与圆环之间连接如图电学元件,不计棒与轴及与细圆柱端面的摩擦,也不计细圆柱、圆环及感应电流产生的磁场,开始时S1断开,S2拔在1位置,R1=R3=4Ω,R2=R4=6Ω,C=30uF,求:(1)S1闭合,问沿垂直于棒的方向以多大的水平外力作用于棒的A端,才能使棒稳定后以角速度10rad/s匀速转动?(2)S1闭合稳定后,S2由1拔到2位置,作用在棒上的外力不变,则至棒又稳定匀速转动的过程中,流经R3的电量是多少?
我国发射的“嫦娥一号”卫星发射后首先进入绕地球运行的“停泊轨道”,通过加速再进入椭圆“过渡轨道”,该轨道离地心最近距离为L1,最远距离为L2,卫星快要到达月球时,依靠火箭的反向助推器减速,被月球引力“俘获”后,成为环月球卫星,最终在离月心距离L3的“绕月轨道”上飞行.已知地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面的重力加速度为g/6,求:(1)卫星在“停泊轨道”上运行的线速度;(2)卫星在“绕月轨道”上运行的线速度.(3)假定卫星在“绕月轨道”上运行的周期内为T,卫星轨道平面与地月连心线共面,求在该一个周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(忽略月球绕地球转动对遮挡时间的影响)。
如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值为R=1Ω的电阻连接;导轨上放一质量为m=0.5kg的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B=0.5T的匀强磁场中.现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示.(取重力加速度g=10m/s2)求:(1)t=10s时拉力的大小及电路的发热功率.(2)在0~10s内,通过电阻R上的电量.
质量为5×kg的带电粒子以=2m/s的速度从水平放置的平行金属板A、B中央水平飞入板间,如图示,已知板长L=10cm,板间距离d=2cm,当=1000V时,带电粒子恰好沿直线穿过板间,问粒子所带电荷的符号及量值,并计算AB间电压在什么范围内带电粒子能从板间飞出(g取10m/)
如图所示,声源S和观察者A都沿x轴正方向运动,相对于地面的速率分别为vs和vA.空气中声音传播的速率为vp,设vs<vp,vA<vp,空气相对于地面没有流动. (1)若声源相继发出两个声信号.时间间隔为Δt,请根据发出的这两个声信号从声源传播到观察者的过程.确定观察者接收到这两个声信号的时间间隔Δt'. (2)请利用(1)的结果,推导此情形下观察者接收到的声波频率与声源发出的声波频率间
的关系式.