(选修3-4).如图所示,一截面为直角三角形的玻璃棱镜ABC,,D点在AC边 上,AD间距为L。一条光线以60°的入射角从D点射入棱镜,光线垂直BC射出,求:(1)玻璃的折射率;(2)BC边上出射点的位置到C点的距离d。
如图所示,在高1.25m的水平桌面上,一质量为2.0kg的物块在10N的水平拉力作用下, 在A处由静止开始向桌面边缘B运动,2s末撤去水平拉力。物块运动到桌面B端后飞出落在水平地面上。已知物块与桌面之间的动摩擦因数μ=0.3,AB之间的距离为6m,不计空气阻力,g=10m/s2。求:(1)撤去水平拉力前物块加速度的大小;(2)物块离开桌面边缘B点时速度的大小;(3)物块落地点距桌面边缘B点的水平距离。
为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为37°、长为L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个小物块以初速度,从某一高处水平抛出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数(g取10m/s2,)(1)要使小物块不离开轨道,并从水平轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件?(2)a.为了让小物块不离开轨道,并且能够滑回倾斜轨道AB,则竖直圆轨道的半径应该满足什么条件?b.按照“a”的要求,小物块进入轨道后可以有多少次通过圆轨道上距水平轨道高为0.01m的某一点。
如图所示,间距为L、电阻为零的U形金属竖直轨道,固定放置在磁感应强度为B的匀强磁场中,磁场方向垂直纸面里。竖直轨道上部套有一金属条bc,bc的电阻为R,质量为2m,可以在轨道上无摩擦滑动,开始时被卡环卡在竖直轨道上处于静止状态。在bc的正上方高H处,自由落下一质量为m的绝缘物体,物体落到金属条上之前的瞬问,卡环立即释改,两者一起继续下落。设金属条与导轨的摩擦和接触电阻均忽略不计,竖直轨道足够长。求:(1)金属条开始下落时的加速度;(2)金属条在加速过程中,速度达到v1时,bc对物体m的支持力;(3)金属条下落h时,恰好开始做匀速运动,求在这一过程中感应电流产生的热量。
如图所示,一根光滑绝缘细杆与水平面成的角倾斜固定。细杆的一部分处在场强方向水平向右的匀强电场中,场强E=2×104N/C。在细杆上套有一个带电量为q=-1.73×105C、质量为m=3×10-2kg的小球。现使小球从细杆的顶端A由静止开始沿杆滑下,并从B点进入电场,小球在电场中滑至最远处的C点。已知AB间距离,g=10m/s2。求:(1)带电小球在B点的速度vB;(2)带电小球进入电场后滑行最大距离x2;(3)带电小球从A点滑至C点的时问是多少?
把一个质量为m、带正电荷且电量为q的小物块m放在一个水平轨道的P点上,在轨道的O点有一面与轨道垂直的固定墙壁。轨道处于匀强电场中,电场强度的大小为E,其方向与轨道(ox轴)平行且方向向左。若把小物块m从静止状态开始释放,它能够沿着轨道滑动。已知小物块m与轨道之间的动摩擦因数μ,P点到墙壁的距离为,若m与墙壁发生碰撞时,其电荷q保持不变,而且碰撞为完全弹性碰撞(不损失机械能)。求:(1)如果在P点把小物块从静止状态开始释放,那么它第1次撞墙后瞬时速度为零的位置坐标、第2次撞墙之后速度为零的位置坐标的表达式分别是什么?(2)如果在P点把小物块从静止状态开始释放,那么它最终会停留在什么位置?从开始到最后它一共走了多少路程(s)?(3)如果在P点瞬间给小物块一个沿着x轴向右的初始冲量,其大小设为I,那么它第一次又回到P点时的速度()大小为多少?它最终会停留在什么位置?从开始到最后它一共走了多少路程?