解方程组:
如图,已知:在中,,延长到点,使,点,分别是边,的中点.求证:.
先化简:,再从1,2,3中选取一个适当的数代入求值.
如图,抛物线与轴交于、两点在的左侧),与轴交于点,过点的直线与轴交于点,与抛物线的另一个交点为,已知,,点为抛物线上一动点(不与、重合).
(1)求抛物线和直线的解析式;
(2)当点在直线上方的抛物线上时,过点作轴交直线于点,作轴交直线于点,求的最大值;
(3)设为直线上的点,探究是否存在点,使得以点、,、为顶点的四边形为平行四边形?若存在,求出点的坐标;若不存在,请说明理由.
如图,在中,,,,平分,交于点,交于点,的外接圆交于点,连接.
(1)求证:是的切线;
(2)求的半径及的正切值.
在数学活动课上,王老师要求学生将图1所示的正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)
请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个的正方形方格画一种,例图除外)