如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)
如图,EF//AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.∵EF∥AD,∴∠2= ( )又∵∠1=∠2,∴∠1=∠3( )∴AB∥ ( )∴∠BAC+ =180°( )∵∠BAC=80°,∴∠AGD= .
因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).
解方程组:(1) (2)
计算:(1) (2)
直线y=和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作矩形ABCD,AB:BC=3:4。(1)当点A与点F重合时,求证:四边形ADBE是平行四边形,并求直线DE的表达式;(2)当点A不与点F重合时,四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你求出来。