某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?
(本题10分)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题: 某校初中生阅读数学教科书情况统计图表
(1)求样本容量及表格中a,b,c的值,并补全统计图; (2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数; (3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议; ②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?
(本题11分)矩形纸片ABCD的长AD为4cm,宽AB为3cm,把矩形纸片拼叠,使相对两顶点A,C重合,然后展开,求折痕EF的长.
(本题5分)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子比乌龟先到达终点.其中正确的说法是________.(把你认为正确说法的序号都填上)
(本题13分)已知反比例函数y=(x>0)的图象经过点A(2,a)(a>0),过点A作AB⊥x轴,垂足为点B,将线段AB沿x轴正方向平移,与反比例函数y=(x>0)的图象相交于点F(p,q).(1)当F点恰好为线段的中点时,求直线AF的解析式 (用含a的代数式表示);(2)若直线AF分别与x轴、y轴交于点M、N,当q=-a2+5a时,令S=S△ANO+S△MFO(其中O是原点),求S的取值范围.
(本题12分)如图,ABCD是正方形,BE∥AC,AE=AC,CF∥AE,求证:∠AEB=2∠BCF。