黄梅县某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的答卷,学校绘制了“频率分布表”和“频数分布条形图”.请你根据图表中提供的信息,解答下列问题.(1)补全“频率分布表”;(2)在“频数分布条形图”中,将代号为“4”的部分补充完整;(3)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由.(字数在20字以内)
(1)解方程:(2)如图,△ABC各顶点的坐标分别为A(4、4),B(-2,2),C(3,0),①画出它的以原点O为对称中心的△AˊBˊCˊ②写出 Aˊ,Bˊ,Cˊ三点的坐标。(3)已知关于x的方程mx2-(m+2)x+2=0(m≠0).①求证:方程总有两个实数根;②若方程的两个实数根都是整数,求正整数m的值.
如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求抛物线的解析式;(2)连接BE,求h为何值时,△BDE的面积最大;(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.
如图,三角板ABC中,∠ACB=90°,AB=2,∠A=30°,三角板ABC绕直角顶点C顺时针旋转90°得到△A1B1C,求:(1)的长;(2)在这个旋转过程中三角板AC边所扫过的扇形ACA1的面积;(3)在这个旋转过程中三角板所扫过的图形面积.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B两个交点间的距离为:AB=|x1-x2|=;参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为直角三角形时,求b2-4ac的值;(2)当△ABC为等边三角形时,求b2-4ac的值.
在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是 .(2)从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解)