如图所示,一辆质量为500kg的汽车静止在一座半径为40m的圆弧形拱桥顶部(g=10m/s2),求:(1)此时汽车对圆弧形拱桥的压力是多大;(2)如果汽车以10m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大;(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零。
如图,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。一质量为m的导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好。轨道和导体棒的电阻均不计。(1)如图1,若轨道左端MP间接一阻值为R的电阻,导体棒在拉力F的作用下以速度v沿轨道做匀速运动。请通过公式推导证明:在任意一段时间Δt内,拉力F所做的功与电路获取的电能相等。(2)如图2,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻。闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度vm,求此时电源的输出功率。(3)如图3,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。电容器两极板电势差随时间变化的图象如图4所示,已知t1时刻电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。
如图甲所示,固定在水平桌边上的“”型平行金属导轨足够长,倾角为53º,间距L=2m,电阻不计;导轨上两根金属棒ab、cd的阻值分别为R1=2Ω,R2=4Ω,cd棒质量m1=1.0kg,ab与导轨间摩擦不计,cd与导轨间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,整个导轨置于磁感应强度B=5T、方向垂直倾斜导轨平面向上的匀强磁场中。现让ab棒从导轨上某处由静止释放,当它刚要滑出导轨时,cd棒刚要开始滑动;g取10m/s2,sin37 º ="cos53" º =0.6,cos37 º =" sin53" º =0.8。 (1)在乙图中画出此时cd棒的受力示意图,并求出ab棒的速度; (2)若ab棒无论从多高的位置释放,cd棒都不动,则ab棒质量应小于多少? (3)假如cd棒与导轨间的动摩擦因数可以改变,则当动摩擦因数满足什么条件时,无论ab棒质量多大、从多高位置释放,cd棒始终不动?
如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8 W,求该速度的大小.(3)在上问中,若R=2 Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)
如图所示,两足够长的平行光滑的金属导轨、相距为m,导轨平面与水平面夹角,导轨电阻不计,磁感应强度为的匀强磁场垂直导轨平面向上,长为m的金属棒垂直于、放置在导轨上,且始终与导轨接触良好,金属棒的质量为kg、电阻为Ω,两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为m,定值电阻为Ω,现闭合开关并将金属棒由静止释放,取m/s2,求:(1)金属棒下滑的最大速度为多大?(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率为多少?(3)当金属棒稳定下滑时,在水平放置的平行金属板间加一垂直于纸面向里的匀强磁场,在下板的右端且非常靠近下板的位置处有一质量为kg、所带电荷量为C的液滴以初速度水平向左射入两板间,该液滴可视为质点,要使带电粒子能从金属板间射出,初速度应满足什么条件?
(12分)如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为.竖直放置的正方形金属线框边长为、电阻为R、质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平。开始时,线框与物块静止在图中虚线位置且细线水平伸直。将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为,此时细线与水平夹角,线框刚好有一半处于右侧磁场中。(已知重力加速度g,不计一切摩擦)求:(1)此过程中通过线框截面的电荷量q;(2)此时安培力的功率;(3)此过程在线框中产生的焦耳热Q。