某一行星有一质量为m的卫星,以半径r,周期T做匀速圆周运动,求:(1)行星的质量;(2)卫星的加速度;(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少?
如图所示,直角坐标系的ox轴水平,oy轴竖直;M点坐标为(-0.3m,0)、N点坐标为(-0.2m,0);在 -0.3m ≤ X ≤ -0.2m的长条形范围内存在竖直方向的匀强电场E0;在X ≥0的范围内存在竖直向上的匀强电场,场强为E=20N/C;在第一象限的某处有一圆形的匀强磁场区,磁场方向垂直纸面向外,磁感应强度B=2.5T。有一带电量q =+1.0×10-4C、质量m=2×10-4kg的微粒以v0=0.5m/s的速度从M点沿着x轴正方向飞入电场,恰好垂直经过y轴上的P点(图中未画出, yP>0),而后微粒经过第一象限某处的圆形磁场区,击中x轴上的Q点,速度方向与x轴正方向夹角为600。g取10m/s2。求:场强E0的大小和方向;P点的坐标及圆形磁场区的最小半径r;微粒从进入最小圆形磁场区到击中Q点的运动时间(可以用根号及π等表示)
如图(甲)所示,M1M4、N1N4为平行放置的水平金属轨道,M4P、N4Q为相同半径,平行放置的竖直半圆形金属轨道,M4、N4为切点,P、Q为半圆轨道的最高点,轨道间距L=1.0m,圆轨道半径r=0.32m,整个装置左端接有阻值R=0.5Ω的定值电阻。M1M2N2N1、M3M4N4N3为等大的长方形区域Ⅰ、Ⅱ,两区域宽度 d=0.5m,两区域之间的距离s=1.0m;区域Ⅰ内分布着均匀的变化的磁场B1,变化规律如图(乙)所示,规定竖直向上为B1的正方向;区域Ⅱ内分布着匀强磁场B2,方向竖直向上。两磁场间的轨道与导体棒CD间的动摩擦因数为μ=0.2,M3N3右侧的直轨道及半圆形轨道均光滑。质量m=0.1kg,电阻R0=0.5Ω的导体棒CD在垂直于棒的水平恒力F拉动下,从M2N2处由静止开始运动,到达M3N3处撤去恒力F,CD棒匀速地穿过匀强磁场区,恰好通过半圆形轨道的最高点PQ处。若轨道电阻、空气阻力不计,运动过程导体棒与轨道接触良好且始终与轨道垂直,g取10m/s2求:水平恒力F的大小;CD棒在直轨道上运动过程中电阻R上产生的热量Q;磁感应强度B2的大小。
已知万有引力常量为G,地球半径为R,同步卫星距地面的高度为h,地球的自转周期为T,地球表面的重力加速度为g。某同学根据以上条件,提出一种计算地球赤道表面的物体随地球自转的线速度大小的方法:地球赤道表面的物体随地球作匀速圆周运动,由牛顿运动定律有。又根据地球上的物体的重力与万有引力的关系,可以求得地球赤道表面的物体随地球自转的线速度的大小v。请判断上面的方法是否正确。如果正确,求出v的结果;如不正确,给出正确的解法和结果。由题目给出的条件再估算地球的质量。
质量的物体在方向平行于斜面、大小为的拉力作用下,从固定粗糙斜面的底端由静止开始沿斜面向上运动,拉力作用后撤去。已知斜面与水平面的夹角,如图所示。斜面足够长,物体与斜面间的动摩擦因数 ,取重力加速度。求:在拉力作用下,物体的加速度大小撤去拉力后,物体沿斜面向上滑行的时间自静止开始到上滑至速度为零时,物体通过的总位移大小(,)
在平直的高速公路上,一辆汽车正以的速度匀速行驶,因前方出现紧急情况,司机立即刹车,直到汽车停下,已知汽车的质量为,刹车时汽车所受的阻力大小为,求:刹车时汽车的加速度大小;从开始刹车到最终停下,汽车运动的时间;从开始刹车到最终停下,汽车前进的距离。