如图所示,在平面内有一扇形金属框,其半径为,边与轴重合,边与轴重合,且为坐标原点,边与边的电阻不计,圆弧上单位长度的电阻为。金属杆MN长度为L,放在金属框上,MN与边紧邻,金属杆ac长度的电阻为R0。磁感应强度为B的匀强磁场与框架平面垂直并充满平面。现对MN杆施加一个外力(图中未画出),使之以C点为轴顺时针匀速转动,角速度为。求:(1)在MN杆运动过程中,通过杆的电流I与转过的角度间的关系;(2)整个电路消耗电功率的最小值是多少?
如图所示,在倾角θ=37°的固定斜面上放置一质量M=1kg、长度L=3m的薄平板AB.平板的上表面光滑,其下端B与斜面底端C的距离为16m.在平板的上端A处放一质量m=0.6kg的滑块,开始时使平板和滑块都静止,之后将它们无初速释放.设平板与斜面间、滑块与斜面间的动摩擦因数均为m=0.5,求滑块与平板下端B到达斜面底端C的时间差Δt.(sin370=0.6,cos370=0.8,g=10m/s2)
如图所示,水平线QC下方是水平向左的匀强电场;区域Ⅰ(梯形PQCD)内有垂直纸面向里的匀强磁场,磁感应强度为B;区域Ⅱ(三角形APD)内也有垂直纸面向里的匀强磁场,但是磁感应强度大小可以与区域Ⅰ不同;区域Ⅲ(虚线PD之上、三角形APD以外)有垂直纸面向外的匀强磁场,磁感应强度与区域Ⅱ内磁感应大小相等。三角形AQC是边长为2L的等边三角形,P、D分别为AQ、AC的中点.带正电的粒子从Q点正下方、距离Q点为L的O点以某一速度射出,在电场力作用下从QC边中点N以速度v0垂直QC射入区域Ⅰ,接着从P点垂直AQ射入区域Ⅲ。若区域Ⅱ、Ⅲ的磁感应强度大小与区域Ⅰ的磁感应强度满足一定的关系,此后带电粒子又经历一系列运动后又会以原速率返回O点.(粒子重力忽略不计)求: (1)该粒子的比荷; (2)粒子从O点出发再回到O点的整个运动过程所有可能经历的时间.
如图所示,固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图,图中两组平行双直线表示“”形槽的两侧壁).槽内放置一个滑块,滑块的左半部是半径为R的半圆柱形光滑凹槽,滑块的宽度为2R,恰与“”形槽的两内侧壁的间距相等,滑块可在槽内沿槽壁自由滑动.现有一金属小球(可视为质点)以水平初速度v0沿槽的一侧壁冲向滑块,从滑块的半圆形槽口边缘进入滑块凹槽.已知金属小球的质量为m,滑块的质量为3m,整个运动过程中无机械能损失.求: (1)当金属小球滑离滑块时,金属小球和滑块的速度各是多大; (2)当金属小球经过滑块上的半圆柱形槽的最右端A点时,金属小球的对地速率.
如图甲所示,一物块质量为m=2kg,以初速度从O点沿粗糙的水平面向右运动,同时受到一水平向左的恒力F作用,物块在运动过程中速度随时间变化的规律如图乙所示,求: (1)恒力F的大小及物块与水平面的动摩擦因数μ; (2)物块在4秒内的位移大小。
在竖直平面内建立一平面直角坐标系xoy,x轴沿水平方向,如图甲所示。第一象限内有竖直向上的匀强电场,第二象限内有一水平向右的匀强电场。某种发射装置(未画出)竖直向上发射出一个质量为m、电荷量为q的带正电粒子(可视为质点),该粒子以v0的初速度从x轴上的A点进入第二象限,并从y轴上的C点沿水平方向进入第一象限后能够沿水平方向运动到D点。已知OA、OC距离相等,CD的距离为OC,E点在D点正下方,位于x轴上,重力加速度为g。则: (1)求粒子在C点的速度大小以及OC之间的距离; (2)若第一象限同时存在按如图乙所示规律变化的磁场,磁场方向垂直纸面,(以垂直纸面向外的磁场方向为正方向,图中B0,T0均为未知量),并且在时刻粒子由C点进入第一象限,且恰好也能通过同一水平线上的D点,速度方向仍然水平。若粒子在第一象限中运动的周期与磁场变化周期相同,求交变磁场变化的周期; (3)若第一象限仍同时存在按如图乙所示规律变化的磁场(以垂直纸面向外的磁场方向为正方向,图中B0,T0均为未知量),调整图乙中磁场变化的周期,让粒子在t=0时刻由C点进入第一象限,且恰能通过E点,求交变磁场的磁感应强度B0应满足的条件。