如图所示,竖直平面内有足够长的金属导轨,轨距0.2m,金属导体ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4Ω,导轨电阻不计,导轨ab的质量为0.2g,垂直纸面向里的匀强磁场的磁应强度为0.2T,且磁场区域足够大,当ab导体自由下落0.4s时,突然接通电键K,则:(1)试说出K接通后,ab导体的运动情况。(2)ab导体匀速下落的速度是多少?(g取10m/s2)
我国的“探月工程”计划将于2017年宇航员登上月球。若宇航员登上月球后,在距离月球水平表面h高度处,以初速度v0水平拋出一个小球,测得小球从抛出点到落月点的水平距离s。求:(1)月球表面重力加速度的大小;(2)小球落月时速度v的大小。
如图,竖直平面内放着两根间距L = 1m、电阻不计的足够长平行金属板M、N,两板间接一阻值R= 2Ω的电阻,N板上有一小孔Q,在金属板M、N及CD上方有垂直纸面向里的磁感应强度B0= 1T的有界匀强磁场,N板右侧区域KL上、下部分分别充满方向垂直纸面向外和向里的匀强磁场,磁感应强度大小分别为B1=3T和B2=2T。有一质量M = 0.2kg、电阻r =1Ω的金属棒搭在MN之间并与MN良好接触,用输出功率恒定的电动机拉着金属棒竖直向上运动,当金属棒达最大速度时,在与Q等高并靠近M板的P点静止释放一个比荷的正离子,经电场加速后,以v =200m/s的速度从Q点垂直于N板边界射入右侧区域。不计离子重力,忽略电流产生的磁场,取g=。求:(1)金属棒达最大速度时,电阻R两端电压U;(2)电动机的输出功率P;(3)离子从Q点进入右侧磁场后恰好不会回到N板,Q点距分界线高h等于多少。
如图所示,有一光滑、不计电阻且较长的“"平行金属导轨,间距L="l" m,导轨所在的平面与水平面的倾角为3 7°,导轨空间内存在垂直导轨平面的匀强磁场。现将一质量m=0.1kg、电阻R=2的金属杆水平靠在导轨处,与导轨接触良好。(g=l0m/s2,sin37°=0.6 cos37°=0.8)(1)若磁感应强度随时间变化满足B=2+0.2t(T),金属杆由距导轨顶部l m处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度;(2)若匀强磁场大小为定值,对金属杆施加一个平行于导轨斜面向下的外力F,其大小为为金属杆运动的速度,使金属杆以恒定的加速度a=10m/s2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B的大小;(3)若磁感应强度随时间变化满足时刻金属杆从离导轨顶端So="l" m处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5 m所用的时间。
如图所示,电压为U的两块平行金属板MN,M板带正电。X轴与金属板垂直,原点O与N金属板上的小孔重合,在O≤X≤d区域存在垂直纸面的匀强磁场 (图上未画出)和沿y轴负方向火小为的匀强电场,与E在y轴方向的区域足够大。有一个质量为m,带电量为q的带正电粒子(粒子重力不计),从靠近M板内侧的P点(P点在X轴上)由静止释放后从N板的小孔穿出后沿X轴做直线运动;若撤去磁场,在第四象限X>d的某区域加上左边界与y轴平行且垂直纸面的匀强磁场B2(图上未画出),为了使粒子能垂直穿过X轴上的Q点,Q点坐标为()。求(1)磁感应强度的大小与方向;(2)磁感应强度B2的大小与方向;(3)粒子从坐标原点O运动到Q点所用的时间t。
如图所示,光滑的水平面AB与半径R=0.4m的光滑竖直半圆轨道BCD在B点相切,D点为半圆轨道最高点,A点的右侧连接一粗糙的水平面。用细线连接甲、乙两物体,中问夹一轻质压缩弹簧,弹簧与甲、乙两物体不拴接,甲的质量朋=4kg,乙的质量=5kg,甲、乙均静止。若固定乙,烧断细线,甲离开弹簧后经过B点进入半圆轨道,过D点时对轨道的压力恰好为零。取g=10m/s2,甲、乙两物体均可看作质点,求:(1)甲离开弹簧后经过B点时的速度的大小;(2)在弹簧压缩量相同的情况下,若固定甲,烧断细线,乙物体离开弹簧后从A点进入动摩擦因数=0.4的粗糙水平面,则乙物体在粗糙水平面运动的位移S。