如图所示,倾角θ=30°,宽度L=1m的足够长的U形平行光滑金属导轨,固定在磁感强度B=1T,范围充分大的匀强磁场中,磁场方向与导轨平面垂直.用平行于导轨,功率恒为6W的牵引力F牵引一根质量m=0.2kg,电阻R=1Ω放在导轨上的金属棒ab,由静止开始沿导轨向上移动(ab始终与导轨接触良好且垂直),当ab棒移动2.8m时获得稳定速度,在此过程中,金属棒产生的热量为5.8J(不计导轨电阻及一切摩擦,取g=10m/s2),求:(1)ab棒的稳定速度;(2)ab棒从静止开始达到稳定速度所需时间.
如图所示,用长L的绝缘细线着一个质量为m,带电量为+q的小球,线的另一端固定在水平向右的匀强电场中,开始时把小球、线拉到和O的同一水平面上的A点(线拉直),让小球由静止开始释放,当摆线摆到与水平线成60°,到达B点时,球的速度正好为零,重力加速度用g表示,求:(1)A、B两点的电势差U;(2)匀强电场的电场强度。
在同一水平面上的两导轨互相平行,相距 m,并处于竖直向上的匀强磁场中,一根质量为kg的金属棒放在导轨上,与导轨垂直,如图所示,当导体棒中电流A,金属棒做匀速直线运动,当金属棒中电流A时金属棒将获得m/s2加速度,求该匀强磁场的磁感应强度。
如图(a)所示,两块水平放置的平行金属板A、B,板长L="18.5" cm,两板间距d="3" cm,两板之间有垂直于纸面向里的匀强磁场,磁感应强度B=6.0×10-2 T,两板加上如图(b)所示的周期性变化的电压,t=0时A板带正电.已知t=0时,有一个质量m=1.0×10-12 kg,带电荷量q=+1.0×10-6 C的粒子,以速度v="600" m/s,从距A板 2.5 cm处,沿垂直于磁场、平行于两板的方向射入两板之间,若不计粒子的重力,取π=3.0,求:1.粒子在t=0至t=1×10-4 s内做怎样的运动?位移多大?2.带电粒子从射入到射出板间所用的时间.
如图(甲),MN、PQ两条平行的光滑金属轨道与水平面成θ = 30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 0.5T。质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r。现从静止释放杆a b,测得最大速度为vm。改变电阻箱的阻值R,得到vm与R的关系如图(乙)所示。已知轨距为L = 2m,重力加速度g=l0m/s2,轨道足够长且电阻不计。(1)当R = 0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;(2)求金属杆的质量m和阻值r;(3)求金属杆匀速下滑时电阻箱消耗电功率的最大值Pm。
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°.一质量为m、带电荷量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4点处射出磁场.已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力).