如图所示,长为L(L=ab=dc),高为L(L=bc=ad)的矩形区域abcd内存在着匀强电场。电量为q、质量为m、初速度为的带电粒子从a点沿ab方向进入电场,不计粒子重力。(1)若粒子从c点离开电场,求电场强度的大小(2)若粒子从bc边某处离开电场时速度为,求电场强度的大小(3) 若粒子从cd边某处离开电场时速度为,求电场强度的大小
如图所示,在长为2L、宽为L的区域内有正好一半空间有场强为E、方向平行于短边的匀强电场,有一个质量为m,电量为e的电子,以平行于长边的速度v0从区域的左上角A点射入该区域,不计电子所受重力,要使这个电子能从区域的右下角的B点射出,求:(1)无电场区域位于区域左侧一半内时,如图甲所示,电子的初速度应满足什么条件?(2)无电场区域的左边界离区域左边的距离为x时,如图乙所示,电子的初速度又应满足什么条件。
在图示的电路中,若R1=4Ω,R3=6Ω,电池内阻r=0.6Ω,则电源总功率为40W,输出功率为37.6W,求电源电动势和电阻R2。
如图所示,在竖直平面内,AB为水平放置的绝缘粗糙轨道,CD为竖直放置的足够长绝缘粗糙轨道,AB与CD通过四分之一绝缘光滑圆弧形轨道平滑连接,圆弧的圆心为O,半径R=0.50 m,轨道所在空间存在水平向右的匀强电场,场强的大小E=1.0×104 N/C,现有质量m=0.20 kg,电荷量q=8.0×10-4 C的带电体(可视为质点),从A点由静止开始运动,已知sAB=1.0 m,带电体与轨道AB、CD间的动摩擦因数均为0.5.假定带电体与轨道之间的最大静摩擦力和滑动摩擦力相等.求:(g=10 m/s2) (1)带电体运动到圆弧形轨道C点时的速度;(2)带电体最终停在何处.
如图所示电路,电源电动势E=6V,内阻r=1Ω.外电路中电阻R1=2Ω,R2=3Ω,R3=7.5Ω.电容器的电容C=4μF.求:电键S断开后,电路稳定时电容器的电量?
在如图所示的电路中,R1、R2均为定值电阻,且R1=100Ω,R2阻值未知,R3是一滑动变阻器,当其滑片从左端滑至右端时,测得电源的路端电压随电流的变化图线如图所示,其中A、B两点是滑片在变阻器的两个不同端点得到的。求:(1)电的电动势和内阻;(2)定值电阻R2的阻值;(3)滑动变阻器的最大阻值。