(8分) 如图:直杆上O1O2两点间距为L,细线O1A长为L,O2A长为L,A端小球质量为m,要使两根细线均被拉直,杆应以多大的角速度转动.
如图所示,将一个折射率为n=的透明长方体放在空气中,矩形ABCD是它的一个截面,一单色细光束入射到P点,入射角为θ,AP=AD,AD=d,求:(1)若要使光束进入长方体后能射至AD面上,角θ的最小值为多少?(2)若要此光束在AD面上发生全反射,角θ的范围如何?
在一条直线上有相距d="1.5" m的A、B两点,一列简谐横波沿直线由A点向B点传播,A、B两点的振动图象分别如图中甲、乙所示。已知波长λ>1 m,求这列波的波速v。
如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B = 4.0×10-4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E = 4N/C、方向沿y轴正方向的条形匀强电场,其宽度d = 2m。一质量m = 6.4×10-27kg、电荷量q =3.2×10‑19C的带负电粒子从P点以速度v = 4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力。求:⑴带电粒子在磁场中运动时间;⑵当电场左边界与y轴重合时Q点的横坐标;⑶若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系。
如图甲所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d=0.5m,导轨左端通过导线与阻值为2Ω的电阻R连接,右端通过导线与阻值为4Ω的小灯泡L连接。在矩形区域CDFE内有竖直向上的匀强磁场,CE长为2m,CDFE区域内磁场的磁感应强度B随时间变化的关系如图乙所示,在t=0时,一阻值为2Ω的金属棒在水平恒力F作用下由静止开始从AB位置沿导轨向右运动,在金属棒从AB位置运动到EF位置的过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流大小 (2)恒力F的大小 (3)4s末金属棒的速度大小 (4)金属棒的质量
如甲图所示,水平光滑地面上用两颗钉子(质量忽略不计)固定停放着一辆质量为M=3kg的小车,小车的四分之一圆弧轨道是光滑的,半径为R=0.5m,在最低点B与水平轨道BC相切,视为质点的质量为m=1kg的物块从A点正上方距A点高为h=0.3m处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行恰好停在轨道末端C。现去掉钉子(水平面依然光滑未被破坏)不固定小车,而让其左侧靠在竖直墙壁上,该物块仍从原高度处无初速下落,如乙图所示。不考虑空气阻力和物块落入圆弧轨道时的能量损失,已知物块与水平轨道BC间的动摩擦因数为μ=0.2求:(1)水平轨道BC长度;(2)小车固定时物块到达圆弧轨道最低点B时对轨道的压力;(3)小车不固定时物块再次停在小车上时距小车B点的距离;(4)两种情况下由于摩擦系统产生的热量之比。