极具特色的“八卦楼”(又称“威镇阁”)是漳州的标志性建筑,它建立在一座平台上.为了测量“八卦楼”的高度AB,小华在D处用高1.1米的测角仪CD,测得楼的顶端A的仰角为22o;再向前走63米到达F处,又测得楼的顶端A的仰角为39o(如图是他设计的平面示意图).已知平台的高度BH约为13米,请你求出“八卦楼”的高度约多少米?(参考数据:sin22o≈,tan220≈,sin39o≈,tan39o≈)
已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.
用配方法解方程:2x2+4x﹣6=0.
解一元二次方程:3x2+2x﹣5=0.
邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.(I)判断与推理:(i)邻边长分别为2和3的平行四边形是_________阶准菱形;(ii)为了剪去一个菱形,进行如下操作:如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,请证明四边形ABFE是菱形.(Ⅱ)操作与计算:已知平行四边形ABCD的邻边长分别为l,a(a>1),且是3阶准菱形,请画出平行四边形ABCD及裁剪线的示意图,并在图形下方写出a的值.
在进行二次根式的化简与运算时,如遇到,,这样的式子,还需做进一步的化简: ==. ① ==. ② ===. ③ 以上化简的步骤叫做分母有理化。 还可以用以下方法化简: ====. ④ 1.请用不同的方法化简 (1)参照③式化简=____________ (2)参照④式化简____________ 2.化简:+++…+