如右图所示的匀强电场中,有a、b、c三点,ab=5 cm,bc=12 cm,其中ab沿电场线方向,bc和电场线方向成60°角,一个电荷量为q=4×10-8 C的正电荷从a移到b电场力做功为W1=1.2×10-7 J求:(1)匀强电场的场强E.(2)电荷从b移到c,电场力做功W2.(3)a、c两点间的电势差Uac.
如图所示的坐标系,在y轴左侧有垂直纸面、磁感应强度为B的匀强磁场。在x=L处,有一个与x轴垂直放置的屏,y轴与屏之间有与y轴平行的匀强电场。在坐标原点O处同时释放两个均带正电荷的粒子A和B,粒子A的速度方向沿着x轴负方向,粒子B的速度方向沿着x轴正方向。已知粒子A的质量为m,带电量为q,粒子B的质量是n1m,带电量为n2q(n1、n2均为正整数),释放瞬间两个粒子的速率满足关系式。若已测得粒子A在磁场中运动的半径为r,粒子B击中屏的位置到x轴的距离也等于r。粒子A和粒子B的重力均不计。 (1)若r、m、q、B已知,求vA。 (2)求粒子A和粒子B打在屏上的位置之间的距离(结果用r、n1、n2表示)。
如图所示,空间区域I、II有匀强电场和匀强磁场,MN、PQ为理想边界,I区域高度为d,II区域的高度足够大,匀强电场方向竖直向上;I、II区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外。一个质量为m、带电荷量为q的小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动。已知重力加速度为g。 (1)试判断小球的电性并求出电场强度E的大小; (2)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h; (3)试讨论在h取不同值时,带电小球第一次穿出I区域的过程中,电场力所做的功。
如图所示的xOy坐标系中,y轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B,方向垂直于xOy平面向里.P点的坐标为( 2L,0),Q1、Q2两点的坐标分别为(0, L),(0, -L).坐标为(,0)处的C点固定一平行于y轴放置的长为的绝缘弹性挡板,C为挡板中点,带电粒子与弹性绝缘挡板碰撞前后,沿y方向分速度不变,沿x方向分速度反向,大小不变. 带负电的粒子质量为m,电量为q,不计粒子所受重力.若粒子在P点沿PQ1方向进入磁场,经磁场运动后,求: (1)从Q1直接到达Q2处的粒子初速度大小; (2)从Q1直接到达O点,粒子第一次经过x轴的交点坐标; (3)只与挡板碰撞两次并能回到P点的粒子初速度大小.
(12分)提纯氘核技术对于核能利用具有重大价值.下图是从质子、氘核混合物中将质子和氘核分离的原理图,x轴上方有垂直于纸面向外的匀强磁场,初速度为0的质子、氘核混合物经电压为U的电场加速后,从x轴上的A()点沿与的方向进入第二象限(速度方向与磁场方向垂直),质子刚好从坐标原点离开磁场.已知质子、氘核的电荷量均为,质量分别为m、2m,忽略质子、氘核的重力及其相互作用. (1)求质子进入磁场时速度的大小; (2)求质子与氘核在磁场中运动的时间之比; (3)若在x轴上接收氘核,求接收器所在位置的横坐标.
在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m带有电量为q的粒子以一定的速度,沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计粒子重力影响). (1)如果粒子恰好从A点射出磁场,求入射粒子的速度v1. (2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图所示).求入射粒子的速度v2.