在真空中,半径为r的圆形区域内存在垂直纸面向外的匀强磁场,磁感应强度大小为B,在此区域外围空间有垂直纸面向内的磁感应强度大小也为B的匀强磁场.一个带电粒子从边界上的P点沿半径向外,以速度v0进入外围磁场,已知带电粒子质量m=2×10-10kg,带电荷量q=+5×10-6 C,不计重力,磁感应强度B=1 T,粒子运动速度v0=5×103 m/s,圆形区域半径r=0.2 m,求粒子第一次回到P点所需时间.(结果用π表示)
如图为一架直升机运送沙袋。该直升机A用长度足够长的悬索(其重力可忽略)系住一质量m=50kg的沙袋B。直升机A和沙袋B以 v=10m/s的速度一起沿水平方向匀速运动,某时刻开始将沙袋放下,在t=5s时间内,沙袋在竖直方向上移动的距离按y= t2(单位:m)的规律变化。取g=10m/s2,求: (1)在t=5s时间内沙袋位移大小; (2)在t=5s末沙袋的速度大小.
如图所示,一辆汽车以V0=15m/s的速率通过一座拱桥的桥顶时,汽车对桥面的压力等于车重的一半。取g =10m/s2,求: (1)这座拱桥的半径R; (2)若要使汽车过桥顶时对桥面恰无压力,则汽车过桥顶时的速度V的大小.
如图所示,A、B为两块平行金属板,A板带正电、B板带负电。两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔。C、D为两块同心半圆形金属板,圆心都在贴近B板的O′处,C带正电、D带负电。两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向O’。半圆形金属板两端与B板的间隙可忽略不计。现从正对B板小孔紧靠A板的O处由静止释放一个质量为m、电量为q的带正电微粒(微粒的重力不计),问: (1)微粒穿过B板小孔时的速度多大? (2)为了使微粒能在CD板间运动而不碰板,CD板间的电场强度大小应满足什么条件? (3)从释放微粒开始,经过多长时间微粒通过半圆形金属板间的最低点P点?
如图所示,从A点以v0=4m/s的水平速度抛出一质量m=1kg的小物块(可视为质点),当物块运动至B点时,恰好沿切线方向进入光滑圆弧轨道BC,经圆弧轨道后滑上与C点等高、静止在粗糙水平面的长木板上,圆弧轨道C端切线水平。已知长木板的质量M=4kg,A、B两点距C点的高度分别为H=0.6m、h=0.15m,R=0.75m,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ1=0.2,g=10m/s2。求: (1)小物块运动至B点时的速度大小和方向; (2)小物块滑动至C点时,对圆弧轨道C点的压力; (3)长木板至少为多长,才能保证小物块不滑出长木板?
(15分)如图所示,在A点固定一正电荷,电量为Q,在离A高度为H的C处由静止释放某带同种电荷的液珠,开始运动瞬间的加速度大小恰好为重力加速度g。已知静电常量为k,两电荷均可看成点电荷,不计空气阻力。求: (1)液珠的比荷 (2)液珠速度最大时离A点的距离h。 (3)若已知在点电荷Q的电场中,某点的电势可表示成,其中r为该点到Q的距离(选无限远的电势为零)。求液珠能到达的最高点B离A点的高度rB。