在真空中,半径为r的圆形区域内存在垂直纸面向外的匀强磁场,磁感应强度大小为B,在此区域外围空间有垂直纸面向内的磁感应强度大小也为B的匀强磁场.一个带电粒子从边界上的P点沿半径向外,以速度v0进入外围磁场,已知带电粒子质量m=2×10-10kg,带电荷量q=+5×10-6 C,不计重力,磁感应强度B=1 T,粒子运动速度v0=5×103 m/s,圆形区域半径r=0.2 m,求粒子第一次回到P点所需时间.(结果用π表示)
汽车的车身是装在弹簧上的,如果这个系统的固有周期是1.5 s,汽车在一条起伏不平的路上行驶,路上各凸起处大约都相隔8 m,汽车以多大速度行驶时,车身上下颠簸得最剧烈?
如图为某种透明材料制成的边长为4cm,横截面为正三角形的三棱镜,将其置于空气中,当一细光束从距离顶点A为1cm的D点垂直于AB面入射时,在AC面上刚好发生全反射,光在真空中的速度c=3×108m/s。求:①此透明材料的折射率;②光通过三棱镜的时间。
一气象探测气球,在充有压强为1.00atm(即76.0cmHg)、温度为的氦气时,体积为4.5m3。在缓慢上升至海拔6.0km高空的过程中,气球内氦气压强逐渐减小到此高度上的大气压38.0cmHg,气球内部因启动一持续加热过程而维持其温度不变。此后停止加热,保持高度不变。已知在这一海拔高度气温为。求:(1)氦气在停止加热前的体积(2)氦气在停止加热较长一段时间后的体积。
如图所示,一固定斜面体,其斜边与水平底边的夹角,BC为一段光滑圆弧轨道,DE为半圆形光滑轨道,两圆弧轨道均固定于竖直平面内,一滑板静止在光滑的地面上,右端紧靠C点,上表面所在平面与两圆弧分别相切于C、D两点。一物块被轻放在斜面上F点由静止释放,物块离开斜面后恰好在B点沿切线进入BC段圆弧轨道,再经C点滑上滑板,滑板运动到D点时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,DE半圆弧轨道和BC圆弧轨道的半径均为R,斜面体水平底边与滑板上表面的高度差,板长l=6.5R,板左端到D点的距离L在范围内取值,F点距A点的距离s=12.5R,物块与斜面、物块与滑板间的动摩擦因数均为,重力加速度取g。已知sin37°=0.6,cos37°=0.8。求:(结果用字母m、g、R、L表示)(1)求物块滑到A点的速度大小;(2)求物块滑到C点时所受圆弧轨道的支持力的大小;(3)试讨论物块从滑上滑板到离开左端的过程中,克服摩擦力做的功Wf与L的关系;并判断物块能否滑到DE轨道的中点。
如图所示,两平行的光滑金属导轨安装在一倾角的光滑绝缘斜面上,导轨间距L,导轨电阻忽略不计且足够长,一宽度为d的有界匀强磁场垂直于斜面向上,磁感应强度为B。另有一长为2d的绝缘杆将一导体棒和一边长为d(d <L)的正方形线框连在一起组成的固定装置,总质量为m,导体棒中通有大小恒为I的电流,将整个装置置于导轨上。开始时导体棒恰好位于磁场的下边界处,由静止释放后装置沿斜面向上运动,当线框的下边运动到磁场的上边界MN处时装置的速度恰好为零,之后装置将向下运动,然后再向上运动,经过若干次往返后,最终整个装置将在斜面上作稳定的往复运动。已知B=2.5T,I=0.8A,L=0.5m,m=0.04kg,d=0.38m,取g=10 m/s2,sin37°=0.6,cos37°=0.8。求:(1)装置被释放的瞬间,导线棒加速度的大小;(2)从装置被释放到线框下边运动到磁场上边界MN处的过程中,线框中产生的热量;(3)装置作稳定的往复运动后,导体棒的最高位置与最低位置之间的距离。