天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可计算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)
一定质量的理想气体,经过如图所示的由A经B到C的状态变化.设状态A的温度为400K.求:①状态C的温度Tc为多少K?②如果由A经B到C的状态变化的整个过程中,气体对外做了400J的功,气体的内能增加了20J,则这个过程气体是吸收热量还是放出热量?其数值为多少?
如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向里的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿轴负方向的匀强电场.一粒子源固定在x轴上的A点,A点坐标为(-L,0)。.粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L),电子经过磁场偏转后方向恰好垂直于x轴射入第四象限.(电子的质量间的相互作用.)求:(1)第二象限内电场强度E的大小;(2)电子离开电场时的速度方向与y轴正方向的夹角θ;(3)圆形磁场的最小半径Rmin.
如图所示,正方形导线框,每边长为L,边的质量为m,且质量分布均匀,其它边质量不计,导线框的总电阻为R,cd边与光滑固定转轴相连,线框可绕轴自由转动,整个装置处在磁感应强度大小为B,方向竖直向下的匀强磁场中.现将线框拉至水平位置,由静止开始释放,经时间t,ab边到达最低点,此时ab边的角速度为.不计空气阻力.求:(1)在t时间内通过导线横截面的电量q为多少;(2)在最低点时ab边受到的安培力大小和方向;(3)在最低点时ab边受到ca边的拉力大小;(4)在t时间内线框中产生的热量.
如图所示为某工厂的贷物传送装置,水平运输带与一斜面MP连接,运输带运行的速度为v0=5m/s。在运输带上的N点将一小物体轻轻的放在上面,N点距运输带的右端x="1.5m," .小物体的质量为m=0.4kg,设货物到达斜面最高点P时速度恰好为零,斜面长度L="0.6m," 它与运输带的夹角为θ=30°,连接M是平滑的,小物体在此处无碰撞能量损失,小物体与斜面间的动摩擦因数为μ1=/6。(g=10m/s2。空气阻力不计)求:(1)小物体运动到运输带右端时的速度大小;(2)小物体与运输带间的动摩擦因数;(3)小物体在运输带上运动的过程中由于摩擦而产生的热量.。
如图所示,水平屋顶高H=5 m,墙高h=3.2 m,墙到房子的距离L=3 m,、墙外马路宽x=10 m,小球从房顶水平飞出,落在墙外的马路上,求小球离开房顶时的速度v0的取值范围.(取g=10 m/s2)