汽车由静止开始在平直的公路上行驶,0~60 s内汽车的加速度随时间变化的图象如图所示.(1)画出汽车在0~60 s内的v-t图象;(2)求在这60 s内汽车行驶的路程.
如图所示,半径为R的光滑圆形轨道固定在竖直面内.小球A、B质量分别为m、βm(β为待定系数).A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为R,碰撞中无机械能损失.重力加速,碰撞中无机械能损失.重力加速度为g.试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;(3)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度.
2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功。图1为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图。飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止。若航母保持静止,在某次降落中,以飞机着舰为计时起点,飞机的速度随时间变化关系如图2所示。飞机在t1=0.4s时恰好钩住阻拦索中间位置,此时速度v1=70m/s;在t2=2.4s时飞机速度v2=10m/s。飞机从t1到t2的运动可看成匀减速直线运动。设飞机受到除阻拦索以外的阻力f大小不变,f=5.0×104N,“歼15”舰载机的质量m=2.0×104kg。(1)若飞机在t1时刻未钩住阻拦索,仍立即关闭动力系统,仅在阻力f的作用下减速,求飞机继续滑行的距离(假设甲板足够长);(2)在t1至t2间的某个时刻,阻拦索夹角α=120°,求此时阻拦索中的弹力T;(3)飞机钩住阻拦索后在甲板上滑行的距离比无阻拦索时少s=898m,求从t2时刻至飞机停止,阻拦索对飞机做的功W。
用天文望远镜长期观测,人们在宇宙中发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质存在的形式和分布有了较深刻的认识,双星系统是由两个星体构成,其中每个星体的线度都小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理,现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动。万有引力常量为G。(1)计算该双星系统的运动周期T计算。(2)若实验上观测到的运动周期为T观测,且T观测:T计算=1: (N>1),为了解释T观测与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质,作为一种简化模型,我们假定在这两个星体连线为直径的球体内均匀分布着暗物质,而不考虑其它暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。
跳伞运动员从跳伞塔上跳下,当降落伞打开后,伞和运动员所受的空气阻力大小跟下落速度的平方成正比,即f=kv2,已知比例系数k =20Ns2/m2,运动员和伞的总质量m=72kg.设跳伞塔足够高,且运动员跳离塔后即打开伞,取g=10m/s2.(1)求下落速度达到v=3m/s时,跳伞运动员的加速度大小;(2)求跳伞运动员最终下落的速度; (3)若跳伞塔高h=200m,跳伞运动员在着地前已经做匀速运动,求从开始跳下到即将触地的过程中,伞和运动员损失的机械能.(本问结果保留3位有效数字
如图所示,一质量m=1 kg的木板静止在光滑水平地面上.开始时,木板右端与墙相距L=0.08 m,一质量m=1 kg的小物块以初速度v0=2 m/s滑上木板左端.木板的长度可保证物块在运动过程中不与墙接触.物块与木板之间的动摩擦因数μ=0.1,木板与墙碰撞后以与碰撞前瞬时等大的速度反弹.取g=10 m/s2,求:(1)从物块滑上木板到两者达到共同速度时,木板与墙碰撞的次数及所用的时间.(2)达到共同速度时木板右端与墙之间的距离.