在心电图仪、地震仪等仪器工作过程中,要进行振动记录,如图甲所示是一个常用的记录方法,在弹簧振子的小球上安装一支记录用笔P,在下面放一条白纸带.当小球振动时,匀速拉动纸带(纸带运动方向与振子振动方向垂直),笔就在纸带上画出一条曲线,如图乙所示.(1)若匀速拉动纸带的速度为1 m/s,则由图中数据算出振子的振动周期为多少?(2)作出P的振动图象.(3)若拉动纸带做匀加速运动,且振子振动周期与原来相同,由图丙中的数据求纸带的加速度大小.
如图所示,矩形区域I和II内分别存在方向垂直于纸面向外和向里的匀强磁场(AA′、BB′、CC′、DD′为磁场边界,四者相互平行),磁感应强度大小均为B,矩形区域的长度足够长,两磁场宽度及BB′与CC′之间的距离均相同。某种带正电的粒子从AA′上O1处以大小不同的速度沿与O1A成α=30°角进入磁场(如图所示,不计粒子所受重力),当粒子的速度小于某一值时,粒子在区域I内的运动时间均为t0.当速度为v0时,粒子在区域I内的运动时间为t0/5。求:(1)粒子的比荷q/m(2)磁场区域I和II的宽度d;(3)速度为v0的粒子从Ol到DD′所用的时间。
如图所示,A是置于光滑水平面上的表面绝缘、质量m1="1" kg的小车,小车的左端放置有一个可视为质点的、质量m2=2 kg、电荷量q=+1×10-4 C的小物块B,距小车右端s=2 m处有一竖直的墙壁。小车所在空间有一个可以通过开关控制其有、无的水平向右的匀强电场,电场强度的大小为E=3×104N/C。若小车A和小物块B一起由静止开始运动,且在小车与墙壁碰撞的瞬间撤去电场;碰撞时间忽略不计,碰撞过程无机械能的损失;小物块B始终未到达小车A的右端,它们之问的动摩擦因数=0.2,最大静摩擦力等于滑动摩擦力。小车不带电,g取10 m/s2。求:(1)有电场作用时小车A所受的摩擦力大小和方向?(2)小车A第一次与墙壁相碰后向左运动的最远距离为多少? (3)小车A第二次与墙壁相碰时的速度为多少?(4)要使小物块B最终不滑离小车A,小车的长度至少多长?
如图所示(俯视图),相距为2L的光滑平行金属导轨水平放置,导轨一部分处在以OO'为右边界的匀强磁场中,匀强磁场的磁感应强大小为B,方向垂直导轨平面向下,导轨右侧接有定值电阻R,导轨电阻忽略不计。在距边界OO'为L处垂直导轨放置一质量为m、电阻不计的金属杆ab。求解以下问题:(1)若金属杆ab固定在导轨上的初始位置.磁场的磁感应强度在时间t内由B均匀减小到零.求此过程中电阻R上产生的焦耳热Ql。(2)若磁场的磁感应强度不变,金属杆ab在恒力作用下由静止开始向右运动3L距离,其V--X的关系图象如图乙所示。求:①金属杆ab刚要离开磁场时的加速度大小;②此过程中电阻R上产生的焦耳热Q2。
如图1所示,A、B为水平放置的平行金属板,板间距离为d(d远小于板的长和宽).在两板的中心各有小孔O和O’,O和O’ 处在同一竖直线上.在两板之间有一带负电的质点P.已知A、B间所加电压为U0时,质点P所受的电场力恰好与重力平衡.现在A、B 间加上如图2所示随时间t作周期性变化的电压U,已知周期(g为重力加速度).在第一个周期内的某一时刻t0,在A、B 间的中点处由静止释放质点P,一段时间后质点P从金属板的小孔飞出.(1)t0在什么范围内,可使质点在飞出小孔之前运动的时间达到最短?(2)t0在哪一时刻,可使质点P从小孔飞出时的速度达到最大?
如图所示,水平地面上有一辆固定有长为L的竖直光滑绝缘管的小车,管的底部有一质量m=0.2g、电荷量q=8×10-5C的小球,小球的直径比管的内径略小。在管口所在水平面MN的下方存在着垂直纸面向里、磁感应强度为B1=15T的匀强磁场,MN面的上方还存在着竖直向上、场强E=25V/m的匀强电场和垂直纸面向外、磁感应强度B2=5T的匀强磁场。现让小车始终保持v=2m/s的速度匀速向右运动,以带电小球刚经过场的边界PQ为计时的起点,测得小球对管侧壁的弹力FN随高度h变化的关系如图所示。g取10m/s2,π取3.14,不计空气阻力。求:(1)小球刚进入磁场B1时的加速度大小a;(2)绝缘管的长度L;(3)小球离开管后再次经过水平面MN时距管口的距离Δx。