如图所示,固定于水平面上的金属架CDEF处在竖直向下的匀强磁场中,金属棒MN沿框架以速度v向右做匀速运动.t=0时,磁感应强度为B0,此时MN到达的位置使MDEN构成一个边长为l的正方形.为使MN棒中不产生感应电流,从t=0开始,磁感应强度B应怎样随时间t变化?请推导出这种情况下B与t的关系式.
如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板间电势差为U,间距为L,右侧为“梯形”匀强磁场区域ACDH,其中,AH//CD, =4L。一束电荷量大小为q、质量不等的带电粒子(不计重力、可视为质点),从狭缝S1射入左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射入“梯形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“梯形”宽度=L,忽略电场、磁场的边缘效应及粒子间的相互作用。(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;(2)求出这束粒子可能的质量最小值和最大值;(3)求出(2)问中偏转角度最大的粒子在“梯形”区域中运动的时间。
光滑水平面上有一质量为M="2" kg的足够长的木板,木板上最有右端有一大小可忽略、质量为m=3kg的物块,物块与木板间的动摩擦因数,且最大静摩擦力等于滑动摩擦力。开始时物块和木板都静止,距木板左端L=2.4m处有一固定在水平面上的竖直弹性挡板P。现对物块施加一水平向左外力F=6N,若木板与挡板P发生撞击时间极短,并且撞击时无动能损失,物块始终未能与挡板相撞,求:(1)木板第一次撞击挡板P时的速度为多少?(2)木板从第一次撞击挡板P到运动至右端最远处所需的时间及此时物块距木板右端的距离X为多少?(3)木板与挡板P会发生多次撞击直至静止,而物块一直向左运动。每次木板与挡板P撞击前物块和木板都已相对静止,最后木板静止于挡板P处,求木板与物块都静止时物块距木板最右端的距离X为多少?
如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,弹簧的自由端恰好在P2的左端A点。物体P置于P1的最右端,质量为2m且可以看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P与P2之间的动摩擦因数为μ,求①P1、P2刚碰完时的共同速度v1和P的最终速度v2;②此过程中弹簧最大压缩量x。
如图所示,直角三棱镜折射率为,∠B=30°,一束单色光垂直于AC面射向棱镜,入射点为O,试画出光在棱镜中传播的光路图,并求出光射出棱镜时折射角。(不考虑BC面对光线的反射)
如图所示,导热气缸平放在水平地面上,用横截面积为S=0.1×10-2 m2的光滑活塞A和B封闭两部分理想气体I和Ⅱ,活塞A、B的质量分别为mA="2" kg,mB="4" kg,活塞A、B到气缸底部的距离分别为20 cm和8 cm。现将气缸转至开口向上,环境温度不变,外界大气压强p0=1.0×105Pa。待状态稳定时,求活塞A移动的距离。