缓冲装置可抽象成如右图所示的简单模型,图中A、B为原长相等、劲度系数分别为k1、k2(k1≠k2)的两个不同的轻质弹簧.下列表述正确的是( )A.装置的缓冲效果与两弹簧的劲度系数无关B.垫片向右移动稳定后,两弹簧产生的弹力之比F1∶F2=k1∶k2C.势片向右移动稳定后,两弹簧的长度之比l1∶l2=k2∶k1D.垫片向右移动稳定后,两弹簧的压缩量之比x1∶x2=k2∶k1
如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中。一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u。现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g。则此过程
如下图所示,一列简谐横波在x轴上传播,图甲和图乙分别为x轴上a、b两质点的振动图象,且,Xab=6m,下列判断正确的是
右图中的虚线为某电场的等势面,有两个带电粒子(重力不计),以不同的速率,沿不同的方向,从A点飞入电场后,沿不同的径迹1和2运动,由轨迹可以判断 A.两粒子的电性一定相反 B.粒子1的动能先减小后增大 C.粒子2的电势能先增大后减小 D.经过B、C两点时两粒子的速率可能相等
万有引力定律和库仑定律都遵循平方反比律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比. 例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E=F/q,在引力场中可以有一个类似的物理量来反映各点引力场的强弱,设地球质量为M,半径为R,地球表面处的重力加速度为g,引力常量为G,如果一个质量为m的物体位于距离地心2R处的某点,则下列表达式中能反映该点引力场强弱的是
心电图仪(如右图所示)通过一系列的传感手段,可将与人心跳对应的生物电流情况记录在匀速运动的坐标纸上.医生通过心电图,可以了解到被检者心跳的情况,例如,测量相邻两波峰的时间间隔,便可计算出1min内心脏跳动的次数(即心率)。同一台心电图仪正常工作时测得待检者甲、乙的心电图分别如图甲、乙所示. 若医生测量时记下被检者甲的心率为60次/min,则可推知乙的心率和这台心电图仪输出坐标纸的走纸速度大小分别为