求证:在直角三角形中,如果有一个锐角等于30°,那么这个锐角所对的直角边等于斜边的一半
如图,是一副学生用的三角板,在△ABC 中,∠C=90°, ∠A=60°,∠B=30°;在△中,∠C=90°, ∠A=45°,∠B=45°,且AB=" CB" .若将边与边CA重合,其中点 与点C重合.将三角板绕点C()按逆时针方向旋转,旋转过的角为,旋转过程中边与边AB的交点为M, 设AC=.(1)计算的长;(2)当=30°时,证明:∥AB;(3)若=,当=45°时,计算两个三角板重叠部分图形的面积;(4)当=60°时,用含的代数式表示两个三角板重叠部分图形的面积.(参考数据:°= ,°= ,°= °= , °= , °=)
某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:
(1)计算这5天销售额的平均数(销售额=单价销量)(2)通过对上面表格中的数据进行分析,发现销量(件)与单价(元/件)之间存在一次函数关系,求关于的函数关系式(不需要写出函数自变量的取值范围);(3)预计在今后的销售中,销量与单价仍然存在(2)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?
已知点A 在抛物线的图象上,设点A关于抛物线对称轴对称的点为B.(1)求点B的坐标;(2)求度数.
如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,.(1)求证:PB是的切线;(2)连接OP,若,且OP=8,的半径为,求BC的长.
某校在开展 “校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?