均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感强度为B的水平匀强磁场上方h处,如图20所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界面平行.当cd边刚进入磁场时:(1)求线框中产生的感应电动势大小.(2)求cd两点间的电势差大小.(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件.
在水平导轨AB的两端各有一竖直的挡板A和B,AB长L=4 m,物体从A处开始以6m/s的速度沿轨道向B运动,已知物体在碰到A或B以后,均以与碰前等大的速度反弹回来,并且物体在导轨上做匀减速运动的加速度大小不变,为了使物体能够停在AB的中点,则这个加速度的大小应为多少?
如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数=0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量=1.0kg。带正电的小滑块A质量=0.60kg,其受到的电场力大小F=1.2N。假设A所带的电量不影响极板间的电场分布。t=0时刻,小滑块A从B表面上的a点以相对地面的速度=1.6m/s向左运动,同时,B(连同极板)以相对地面的速度=0.40m/s向右运动。(g取10m/s2)问:A和B刚开始运动时的加速度大小分别为多少?若A最远能到达b点,a、b的距离L应为多少?从t=0时刻至A运动到b点时,摩擦力对B做的功为多少?
过山车是游乐场中常见的设施,下图是一种过山车的简易模型.它由水平轨道和在竖直平面内的若干个光滑圆形轨道组成,A、B、C…分别是各个圆形轨道的最低点,第一圆轨道的半径R1=2.0m,以后各个圆轨道半径均是前一轨道半径的k倍(k ="0.8)" ,相邻两最低点间的距离为两点所在圆的半径之和.一个质量m=1.0kg的物块(视为质点),从第一圆轨道的左侧沿轨道向右运动,经过A点时的速度大小为v0=12m/s.已知水平轨道与物块间的动摩擦因数=0.5,水平轨道与圆弧轨道平滑连接. g取10m/s2,lg0.45=-0.347,lg0.8=-0.097.试求:物块经过第一轨道最高点时的速度大小;物块经过第二轨道最低点B时对轨道的压力大小;物块能够通过几个圆轨道?
2010年2月在加拿大温哥华举行的第2l届冬季奥运会上,冰壶运动再次成为人们关注的热点,中国队也取得了较好的成绩.如图,假设质量为m的冰壶在运动员的操控下,先从起滑架A点由静止开始加速启动,经过投掷线B时释放,以后匀减速自由滑行刚好能滑至营垒中心O停下.已知AB相距L1,BO相距L2,冰壶与冰面各处动摩擦因数均为μ,重力加速度为g.求冰壶运动的最大速度vm.在AB段运动员水平推冰壶做的功W是多少?若对方有一只冰壶(冰壶可看作质点)恰好紧靠营垒圆心处停着,为将对方冰壶碰出,推壶队员将冰壶推出后,其他队员在BO段的一半长度内用毛刷刷冰,使动摩擦因数变为μ.若上述推壶队员是以与原来完全相同的方式推出冰壶的,结果顺利地将对方冰壶碰出界外,求运动冰壶在碰前瞬间的速度v.
如图所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经过3.0s落到斜坡上的A点。已知O点是斜坡的起点,斜坡与水平面的夹角.不计空气阻力。(取sin37°=0.60,cos37°=0.80;g取10m/s2)求 A点与O点的距离;运动员离开O点时的速度大小;