如图所示,固定的绝热气缸内有一质量为m的“T”型绝热活塞(体积可忽略),距气缸底部h0处连接一U形管(管内气体的体积忽略不计)。初始时,封闭气体温度为T0,活塞距离气缸底部为1.5h0,两边水银柱存在高度差。已知水银的密度为ρ,大气压强为p0,气缸横截面积为S,活塞竖直部分长为1.2h0,重力加速度为g。求:①初始时,水银柱两液面高度差。②通过制冷装置缓慢降低气体温度,当温度为多少时两水银面相平。
随着经济的持续发展,人民生活水平的不断提高,近年来我国私家车数量快速增长,高级和一级公路的建设也正加速进行.为了防止在公路弯道部分由于行车速度过大而发生侧滑,常将弯道部分设计成外高内低的斜面.如果某品牌汽车的质量为m,汽车行驶时弯道部分的半径为r,汽车轮胎与路面的动摩擦因数为μ,路面设计的倾角为θ,如图10所示.(重力加速度g取10 m/s2)(1)为使汽车转弯时不打滑,汽车行驶的最大速度是多少?(2)若取sinθ=,r=60 m,汽车轮胎与雨雪路面的动摩擦因数为μ=0.3,则弯道部分汽车行驶的最大速度是多少?
一辆汽车从静止开始匀加速开出,然后保持匀速运动,最后匀减速运动,直到停止,下表给出了不同时刻汽车的速度:
(1)汽车做匀速运动时的速度大小是否为12 m/s?汽车做加速运动时的加速度和减速运动时的加速度大小是否相等?(2)汽车从开出到停止共经历的时间是多少?(3)汽车通过的总路程是多少?
汽车从甲地由静止出发,沿直线运动到丙地,乙在甲、丙两地的中点.汽车从甲地匀加速运动到乙地,经过乙地时的速度为60 km/h;接着又从乙地匀加速运动到丙地,到丙地时速度为120 km/h,求汽车从甲地到达丙地的平均速度.
如图7所示,一修路工在长为x=100 m的隧道中,突然发现一列火车出现在离右隧道口(A)x0=200 m处,修路工所处的位置在无论向左还是向右跑恰好能安全脱离危险的位置.问这个位置离隧道右出口距离是多少?他奔跑的最小速度至少应是火车速度的多少倍?
天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)