如图所示,轨道ABCD的AB段为一半径R=0.2的光滑1/4圆形轨道,BC段为高为h=5的竖直轨道,CD段为水平轨道。一质量为0.1的小球由A点从静止开始下滑到B点时速度的大小为2/s,离开B点做平抛运动(g=10/s2),求:(1)小球运动到B点时的向心加速度(2)小球离开B点后,在CD轨道上的落地点到C的水平距离; (3)小球到达B点时对圆形轨道的压力大小?
一个运动的处于基态的氢原子与另一静止的处于基态的氢原子发生完全非弹性碰撞时,可使这两个氢原子发生相同的能级跃迁,则运动的氢原子碰撞前的最小动能是多少?已知氢原子的电离能E="13.6" eV.
为了减少光在透镜表面由于反射带来的损失,可在透镜表面涂上一层增透膜,一般用折射率为1.38的氟化镁,为了使波长为5.52×10-7 m的绿光在垂直表面入射时使反射光干涉相消,求所涂的这种增透膜的厚度.
若已知两狭缝间距为1 mm,双缝到屏的距离为200 cm,屏上得到的干涉图样如图所示,请根据图中的测量数据,求出该单色光的波长和频率.
1801年,托马斯·杨用双缝干涉实验研究了光波的性质.1834年,洛埃利用单面镜同样得到了杨氏干涉的结果(称洛埃镜实验). (1)洛埃镜实验的基本装置如图所示,S为单色光源,M为一平面镜. 试用平面镜成像作图法画出S经平面镜反射后的光与直接发出的光在光屏上相交的区域. (2)设光源S到平面镜的垂直距离和到光屏的垂直距离分别为a和L,光的波长为λ,在光屏上形成干涉条纹.写出相邻两条亮纹(或暗纹)间距离Δx的表达式.
如图所示,玻璃棱镜ABCD可以看成是由ADE、ABE、BCD三个直角三棱镜组成.一束频率为5.3×1014Hz的单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知光在真空中的速度c=3×108 m/s,玻璃的折射率n=1.5,求: (1)这束入射光线的入射角多大? (2)该束光线第一次从CD面出射时的折射角.(结果可用三角函数表示)