如图所示,ABCD为固定在竖直平面内的轨道,AB段光滑水平,BC段为光滑圆弧,对应的圆心角θ=37°,半径r=2.5m,CD段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E=2×105N/C、方向垂直于斜轨向下的匀强电场。质量m=5×10-2kg、电荷量q=+1×10-6C的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑行,在C点以速度v0=3m/s冲上斜轨。以小物体通过C点时为计时起点,0.1s以后,场强大小不变,方向反向。已知斜轨与小物体间的动摩擦因数μ=0.25。设小物体的电荷量保持不变,取g=10m/s2,sin37°=0.6,cos37°=0.8。
(1)求弹簧枪对小物体所做的功;
(2)在斜轨上小物体能到达的最高点为P,求CP的长度。
一位工人在水平道路上推一辆运料车,车的质量为45kg,所用的水平推力为90N,产生的加速度为1.8m/s2. 设运料车受到的阻力不变. 求: (1) 运料车受到的阻力大小; (2) 工人撤去水平推力时,车的加速度
如图,手拉着小车静止在倾角为300的光滑斜坡上,已知小车的质量为2.6 kg,求: (1)绳子对小车的拉力 (2)小车对斜面的压力 (3)如果绳子突然断开,求小车的加速度大小。
传送带以稳定的速度v=6m/s顺时针转动,传送带与水平面的夹角θ=37°,现在将一质量m=2kg的物体(可以看作质点)轻放在其底端,传送带顶端平台上的人通过轻绳以恒定的拉力F=20N拉物体,经过一段时间物体被拉到斜面顶端,如图所示,已知传送带底端与顶端的竖直高度H=6m,物体与传送带之间的动摩擦因数μ=0.25,设最大静摩擦力等于滑动摩擦力. (g取10m/s2,sin37°=0.6,cos37°=0.8) (1)从底端开始经多长时间物体与传送速度相同? (2)若达到共速后保持拉力不变,物体还需多长时间到达斜面顶端? (3)若物体与传送带达到速度相等的瞬间,突然撤去拉力,物体还需要多长时间离开传送带?(结果可用根式表示)
如图所示,一轻弹簧的下端固定在倾角θ=37°的斜面上,上端连一不计质量的挡板.一质量m=2 kg的物体从斜面上的A点以初速度v0=m/s下滑。A点距弹簧上端B的距离AB=4 m,当物体到达B后将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点AD=3 m。g取10 m/s2,求: (1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能Epm。
光滑水平桌面上有一轻弹簧,用质量m=0.4 kg的小物块将弹簧缓慢压缩,释放后物块从A点水平抛出, 恰好由P点沿切线进入光滑圆弧轨道MNP,已知其圆弧轨道为半径R=0.8 m的圆环剪去了左上角135°的圆弧,P点到桌面的竖直距离也是R,MN为竖直直径,g=10 m/s2,不计空气阻力。求: (1)物块离开弹簧时的速度大小; (2)物块在N点对圆弧轨道的压力.(结果可用根式表示)