一小球在桌面上从静止开始做加速运动,现用高速摄影机在同一底片多次曝光,记录下小球每次曝光的位置,并将小球的位置编号。如图所示,1位置恰为小球刚开始运动的瞬间,作为零时刻。摄影机连续两次曝光的时间间隔均为0.5s,小球从1位置到6位置的运动过程中经过各位置的速度分别为:v1=0, v2=0.06 m/s, v3= m/s, v4=0.18 m/s,v5= m/s。在坐标图中作出小球的v-t 图象;并根据v-t 图象求出小球运动的加速度a= m/s2。
甲、乙两弹簧振子质量相等,其振动图象如图11-1-7所示,则它们振动的机械能大小关系是E甲_________E乙(填“>”“=”或“<”);振动频率的大小关系是f甲_________f乙;在0—4 s内,甲的加速度为正向最大的时刻是____________,乙的速度为正向最大的时刻是____________.图11-1-7
对于弹簧振子的周期性振动,我们可以通过如图11-1-11所示的小球的匀速圆周运动的投影来模拟。即振子从距平衡位置A处静止释放的同时,球恰从B点做匀速圆周运动,小球运动在x轴上的投影与振子运动同步,小球运动的线速度沿x轴的投影即为振子在投影处的速度。圆周运动的周期为T半径为R。由以上条件可知匀速圆周运动的线速度v1=________,振子在O点的速度大小为__________。图11-1-11
一弹簧振子的质量为100 g,弹簧的劲度系数为k="10" N/m,将振子拉离平衡位置2 cm处放手使其振动,则此振子振动过程中受到的最大回复力大小是___________N,最大加速度的大小是___________m/s2.
甲、乙两个做简谐运动的弹簧振子,在甲振动20次的时间里,乙振动了40次,则甲、乙振动周期之比为___________________;若甲的振幅增大而乙的不变,则甲、乙振动频率之比为______________.
一个做简谐振动的质点,它的振幅是4 cm,频率是2.5 Hz,若从平衡位置开始计时,则经过2 s,质点完成了______________次全振动,质点运动的位移是______________,通过的路程是______________.