甲、乙两个行星的质量之比为81:1,两行星的半径之比为36:1。求:(1)两行星表面的重力加速度之比;(2)两行星的第一宇宙速度之比。
(15分)从高的平台上水平踢出一球,欲击中地面上A点。若两次踢球的方向均正确,第一次初速度为,球的落点比近了;第二次球的落地点比远了,如图,试求:(1)第一次小球下落的时间?(2)第二次踢出时球的初速度多大?
如图所示,在平面直角坐标系中,直线与轴成30°角,点的坐标为(,0),在轴与直线之间的区域内,存在垂直于平面向里磁感强度为的匀强磁场.均匀分布的电子束以相同的速度从轴上的区间垂直于轴和磁场方向射入磁场.己知从轴上点射入磁场的电子在磁场中的轨迹恰好经过点,忽略电子间的相互作用,不计电子的重力.(1)电子的比荷();(2)有一电子,经过直线MP飞出磁场时,它的速度方向平行于y轴,求该电子在y轴上的何处进入磁场;(3)若在直角坐标系的第一象限区域内,加上方向沿轴正方向大小为的匀强电场,在处垂直于轴放置一平面荧光屏,与轴交点为,求:从O点上方最远处进入电场的粒子打在荧光屏上的位置。
如图甲是质谱仪的工作原理示意图.图中的A容器中的正离子从狭缝S1以很小的速度进入电压为U的加速电场区(初速度不计)加速后,再通过狭缝S2从小孔G垂直于MN射入偏转磁场,该偏转磁场是以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁感应强度为B,离子最终到达MN上的H点(图中未画出),测得G、H间的距离为d,粒子的重力可忽略不计。试求:(1)该粒子的比荷(2)若偏转磁场为半径为的圆形区域,且与MN相切于G点,如图乙所示,其它条件不变,仍保证上述粒子从G点垂直于MN进入偏转磁场,最终仍然到达MN上的H点,则圆形区域中磁场的磁感应强度与B之比为多少?
如图所示的电路中,电阻,,电源的电动势E=12V,内电阻r=1Ω,理想电流表A的读数I=0.4A。求:(1)电阻的阻值(2)电源的输出功率(3)电源的效率
竖直放置的两块足够长的平行金属板间有匀强电场.其电场强度为E,在该匀强电场中,用绝缘丝线悬挂质量为m的带电小球,丝线跟竖直方向成θ=30o角时小球恰好平衡,且此时与右板的距离为b,如图所示.已知重力加速度为g,求:(1)小球带电荷量是多少?(2)若剪断丝线,小球碰到金属板需多长时间?