如图所示,一质量M=2.0kg的长木板AB静止在水平面上,木板的左侧固定一半径R=0.60m的四分之一圆弧形轨道,轨道末端的切线水平,轨道与木板靠在一起,且末端高度与木板高度相同。现在将质量m=l.0kg的小铁块(可视为质点)从弧形轨道顶端由静止释放,小铁块到达轨道底端时的速度v0=3.0m/s,最终小铁块和长木板达到共同速度。忽略长木板与地面间的摩擦。取重力加速度g=l0m/s2。求①小铁块在弧形轨道上滑动过程中克服摩擦力所做的功Wf;②小铁块和长木板达到的共同速度v。
如图所示,直角坐标系xOy位于竖直平面内,y轴竖直向上.第Ⅲ、Ⅳ象限内有垂直纸面向外的匀强磁场,第Ⅳ象限同时存在方向平行于y轴的匀强电场(图中未画出).一带电小球从x轴上的A点由静止释放,恰好从P点垂直于y轴进入第Ⅳ象限,然后做圆周运动,从Q点垂直于x轴进入第Ⅰ象限,Q点距O点的距离为d,重力加速度为g.根据以上信息,可以求出的物理量有()
质量为1kg的小球用长为0.5m的细线悬挂在O点,O点距地面高度为1m,如果使小球绕OO′轴在水平面内做圆周运动,若细线受到拉力为12.5N就会被拉断。求: (1)当小球的角速度为多大时线将断裂? (2)小球落地点与悬点的水平距离。(g取10 m/s2)
某个质量为m的物体在从静止开始下落的过程中,除了重力之外还受到水平方向的大小、方向都不变的力F=mg的作用。 (1)这个物体在沿什么样的轨迹运动?求它在时刻t的速度大小。 (2)建立适当的坐标系,写出这个坐标系中代表物体运动轨迹的x、y之间的关系式。