如图甲所示,在某介质中波源A、B相距d=20 m,t=0时两者开始上下振动,A只振动了半个周期,B连续振动,所形成的波的传播速度都为v=1.0 m/s,开始阶段两波源的振动图象如图乙所示.(1)定性画出t=14.3 s时A波所达位置一定区域内的实际波形;(2)求时间t=16 s内从A发出的半波前进过程中所遇到的波峰个数.
2012年11月,我国舰载机在航母上首降成功。设某一载舰机质量为m = 2.5×104 kg,速度为v0=42m/s,若仅受空气阻力和甲板阻力作用,飞机将在甲板上以a0=0.8m/s2的加速度做匀减速运动,着舰过程中航母静止不动。(1)飞机着舰后,若仅受空气阻力和甲板阻力作用,航母甲板至少多长才能保证飞机不滑到海里?(2)为了让飞机在有限长度的跑道上停下来,甲板上设置了阻拦索让飞机减速,同时考虑到飞机尾钩挂索失败需要复飞的情况,飞机着舰时并不关闭发动机。图示为飞机勾住阻拦索后某一时刻的情景,此时发动机的推力大小为F = 1.2×105 N,减速的加速度a1=20m/s2,此时阻拦索夹角θ=106°,空气阻力和甲板阻力保持不变,求此时阻拦索承受的张力大小?
如图所示,在正方形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场。在t=0时刻,一位于正方形区域中心O的粒子在abcd平面内向各个方向发射出大量带正电的粒子,所有粒子的初速度大小均相同,粒子在磁场中做圆周运动的半径恰好等于正方形边长,不计重力和粒子之间的相互作用力。已知平行于ad方向发射的粒子在t=t0时刻刚好从磁场边界cd上的某点离开磁场,(已知)求:(1)粒子的比荷;(2)从粒子发射到粒子全部离开磁场所用的时间;(3)假设粒子发射的粒子在各个方向均匀分布,在t=t0时刻仍在磁场中的粒子数与粒子发射的总粒子数之比。
如图所示,在直角坐标系内,有一质量为,电荷量为的粒子A从原点O沿y 轴正方向以初速度射出,粒子重力忽略不计,现要求该粒子能通过点P(a, -b),可通过在粒子运动的空间范围内加适当的“场”实现。(1) 若只在整个I、II象限内加垂直纸面向外的匀强磁场,使粒子A在磁场中作匀速圆周运动,并能到达P点,求磁感应强度B的大小;(2) 若只在x轴上某点固定一带负电的点电荷Q, 使粒子A在Q产生的电场中作匀速圆周运动,并能到达P点,求点电荷Q的电量大小;(3) 若在整个I、II象限内加垂直纸面向外的匀强磁场,并在第IV象限内加平行于x轴,沿x轴正方向的匀强电场,也能使粒子A运动到达P点。如果此过程中粒子A在电、磁场中运动的时间相等,求磁感应强度B的大小和电场强度E的大小
如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5 m,电阻不计,左端通过导线与阻值R=2 Ω的电阻连接,右端通过导线与阻值RL=4 Ω的小灯泡L连接.在CDFE矩形区域内有竖直向上的匀强磁场,CE长l=2 m,有一阻值r=2 Ω的金属棒PQ放置在靠近磁场边界CD处.CDFE区域内磁场的磁感应强度B随时间变化如图乙所示.在t=0至t=4 s内,金属棒PQ保持静止,在t=4 s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化.求:(1)通过小灯泡的电流.(2)金属棒PQ在磁场区域中运动的速度大小.
两根光滑的长直金属导轨MN、M′N′平行置于同一水平面内,导轨间距为l,电阻不计,M、M′处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C.长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中.ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为x的过程中,整个回路中产生的焦耳热为Q.求:(1)ab运动速度v的大小;(2)电容器所带的电荷量q.