如图16所示,半圆形玻璃砖的半径R=10cm,折射率为n=,直径AB与屏幕MN垂直并接触于A点。激光a以入射角i=30°射入玻璃砖的圆心O,在屏幕MN上出现了两个光斑。求这两个光斑之间的距离L。
小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地。如题24图所示。已知握绳的手离地面高度为d,手与球之间的绳长为d,重力加速度为g。忽略手的运动半径和空气阻力。(1)求绳断时球的速度大小和球落地时的速度大小。(2)向绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应是多少?最大水平距离为多少?
14. (16分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg的指点,选手抓住绳由静止开始摆动,此事绳与竖直方向夹角=,绳的悬挂点O距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取中立加速度,,(1)求选手摆到最低点时对绳拉力的大小F;(2)若绳长l="2m," 选手摆到最高点时松手落入手中。设水碓选手的平均浮力,平均阻力,求选手落入水中的深度;(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。
如图,水平地面上有一个坑,其竖直截面为半圆。ab为沿水平方向的直径。若在a点以初速度沿ab方向抛出一小球,小球会击中坑壁上的c点。已知c点与水平地面的距离为圆半径的一半,求圆的半径。
小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系.(小球的半径远小于R)
如图所示,一种向自行车车灯供电的小发电机的上端有一半径r0="1.0" cm的摩擦小轮,小轮与自行车车轮的边沿接触.当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力.自行车车轮的半径R1="35" cm,小齿轮的半径R2="4.0" cm,大齿轮的半径R3="10.0" cm.求大齿轮的转速n1和摩擦小轮的转速n2之比.(假定摩擦小轮与自行车车轮之间无相对滑动)