如图所示是等离子体发电机的示意图,平行金属板间的匀强磁场的磁感应强度B=0.5T,两板间距离为0.2m,要使输出电压为220V,则(1)确定上极板所带电荷的电性(2)求等离子体垂直射入磁场的速度大小
如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C。一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板.滑板运动到C时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长,板右端到C的距离在范围内取值,E距A为,物块与传送带、物块与滑板间的动摩擦因数均为,重力加速度取g.(1)求物块滑到B点的速度大小;(2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功与的关系,并判断物块能否滑到CD轨道的中点。
节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车。有一质量m=1000kg的混合动力轿车,在平直公路上以v1=90km/h匀速行驶,发动机的输出功率为P=50kw。当驾驶员看到前方有80km/h的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动=72m后,速度变为v2=72km/h。此过程中发动机功率的用于轿车的牵引,用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能。假设轿车在上述运动过程中所受阻力保持不变。求(1)轿车以90km/h在平直公路上匀速行驶时,所受阻力F阻的大小;(2)轿车从90km/h减速到72km/h过程中,获得的电能E电;(3)轿车仅用其在上述减速过程中获得的电能E电维持72km/h匀速运动的距离。
如图(a),磁铁A、B的同名磁极相对放置,置于水平气垫导轨上。A固定于导轨左端,B的质量m=0.5kg,可在导轨上无摩擦滑动。将B在A附近某一位置由静止释放,由于能量守恒,可通过测量B在不同位置处的速度,得到B的势能随位置x的变化规律,见图(c)中曲线I。若将导轨右端抬高,使其与水平面成一定角度(如图(b)所示),则B的总势能曲线如图(c)中II所示,将B在处由静止释放,求:(解答时必须写出必要的推断说明。取)(1)B在运动过程中动能最大的位置;(2)运动过程中B的最大速度和最大位移。(3)图(c)中直线III为曲线II的渐近线,求导轨的倾角。(4)若A、B异名磁极相对放置,导轨的倾角不变,在图(c)上画出B的总势能随x的变化曲线.
(14分)如图甲所示,一质量为m="1" kg的物块静止在粗糙水平面上的A点,从t=0时刻开始,物块受到按如图乙所示规律变化的水平力F作用并向右运动,第3 s末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,(g取10 m/s2)求:(1)A与B间的距离;(2)水平力F在5 s内对物块所做的功.
如图有一半径为r="0.2" m的圆柱体绕竖直轴OO′以ω="9" rad/s 的角速度匀速转动.今用力F将质量为1 kg的物体A压在圆柱侧面,使其以v0="2.4" m/s的速度匀速下降.若物体A与圆柱面的摩擦因数μ=0.25,求力F的大小.(已知物体A在水平方向受光滑挡板的作用,不能随轴一起转动.)