公共汽车从车站开出以4 m/s的速度沿平直公路匀速行驶,2 s后一辆摩托车从同一车站开出作初速度为零的匀加速运动去追赶公共汽车,加速度大小为2 m/s2,试问: (1)摩托车出发后,经多少时间追上汽车?(2)摩托车追上汽车时,离出发处多远?(3)摩托车追上汽车前,两者最大距离是多少?
如图所示,1透明半圆柱体折射率为n=2,半径为R,长为L。平行光束从半圆柱体的矩形表面垂直射入,部分柱面有光线射出。求该部分柱面的面积S。
如图,粗细均匀的弯曲玻璃管A、B两端开口,管内有一段水银柱,中管内水银面与管口A之间气体柱长为lA=40cm,右管内气体柱长为lB=39cm。先将口B封闭,再将左管竖直插入水银槽中,设被封闭的气体为理想气体,整个过程温度不变,若稳定后进入左管的水银面比水银槽水银面低4cm,已知大气压强p0=76cmHg,求。①A端上方气柱长度;②稳定后右管内的气体压强.
如图所示,在xOy平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向、+y轴方向为电场强度的正方向)。在t=0时刻由原点O发射初速度大小为v0,方向沿+y轴方向的带负电粒子(不计重力)。其中已知v0、t0、B0、E0,且,粒子的比荷,x轴上有一点A,坐标为(,0)。(1)求时带电粒子的位置坐标。(2)粒子运动过程中偏离x轴的最大距离。(3)粒子经多长时间经过A点。
如图是过山车的部分模型图。模型图中光滑圆形轨道的半径R=8.1m,该光滑圆形轨道固定在倾角为斜轨道面上的Q点,圆形轨道的最高点A与P点平齐,圆形轨道与斜轨道之间圆滑连接。现使小车(视作质点)从P点以一定的初速度沿斜面向下运动,已知斜轨道面与小车间的动摩擦因数为,不计空气阻力,过山车质量为20kg,取g=10m/s2,。若小车恰好能通过圆形轨道的最高点A处,求:(1)小车在A点的速度为多大;(2)小车在圆形轨道的最低点B时对轨道的压力为重力的多少倍;(3)小车在P点的动能.
如图所示,光滑水平细杆MN、CD,MN、CD在同一竖直平面内。两杆间距离为h,N、C连线左侧存在有界的电场,电场强度为E。质量为m的带正电的小球P,穿在细杆上,从M端点由静止向N端点运动,在N、C连线中点固定一个带负电的小球,电荷量为Q。在匀强电场中做匀速圆周运动恰好回到C点,且小球P与细杆之间相互绝缘。求:①带正电的小球P的电荷量q ,②小球P在细杆MN上滑行的末速度v0;③光滑水平细杆M、N两点之间的电势差;