如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直。一质量为m、电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场。粒子在磁场中的运动轨迹与y轴交于M点。已知OP=,。不计重力。求(1)粒子运动到Q点时速度与水平方向的夹角。(2)M点与坐标原点O间的距离。
如图所示为质谱仪的原理图,A为粒子加速器,电压为U1;B为速度选择器,磁场与电场正交,磁感应强度为B1,板间距离为d;C为偏转分离器,磁感应强度为B2.今有一质量为m、电量为q的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R的匀速圆周运动,求: (1)粒子的速度v (2)速度选择器的电压U2 (3)粒子在B2磁场中做匀速圆周运动的半径R.
如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8m,B点距C点的距离L=2.0m.(滑块经过B点时没有能量损失,g=10m/s2),求: (1)滑块在运动过程中的最大速度; (2)滑块与水平面间的动摩擦因数μ.
如图所示,用一根绳子a把物体挂起来,再用另一根水平的绳子b 把物体拉向一旁固定起来.物体的重力是40N,绳子a与竖直方向的夹角θ=37°,绳子a与b对物体的拉力分别是多大?(sin37°=0.6,cos37°=0.8)
列车在机车的牵引下沿平直铁轨匀加速行驶,在100s内速度由5.0m/s增加到15.0m/s. (1)求列车的加速度大小. (2)若列车的质量是1.0×106kg,机车对列车的牵引力是1.5×105N,求列车在运动中所受的阻力大小.
在真空中的光滑绝缘水平面上的O点处,固定一个带正电的小球,所带电荷量为Q,直线MN通过O点,N为OM的中点,OM的距离为d.M点处固定一个带负电的小球,所带电荷量为q,质量为m,如图所示.(静电力常量为k) (1)求N点处的场强大小和方向; (2)求无初速释放M处的带电小球q时,带电小球的加速度大小; (3)若点电荷Q所形成的电场中各点的电势的表达式φ=,其中r为空间某点到点电荷Q的距离.求无初速释放带电小球q后运动到N处时的速度大小v.