如图所示,半圆玻璃砖的半径R=10cm,折射率为n=,直径AB与屏幕垂直并接触于A点。激光a以入射角i =30°射向半圆玻璃砖的圆心O,结果在水平屏幕MN上出现两个光斑。求两个光斑之间的距离L。
在相互垂直的匀强电场和匀强磁场中,有一倾角为θ,足够长的光滑绝缘斜面,磁感应强度为B,方向垂直纸面向外,电场方向竖直向上.有一质量为m,带电量为十q的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零,如图所示,若迅速把电场方向反转竖直向下,小球能在斜面上连续滑行多远?所用时间是多少?
如图,水平放置的光滑的金属导轨M、N,平行地置于匀强磁场中,间距为d,磁场的磁感强度大小为B,方向与导轨平面夹为α,金属棒ab的质量为m,放在导轨上且与导轨垂直。电源电动势为ε,定值电阻为R,其余部分电阻不计。则当电键调闭合的瞬间,棒ab的加速度为多大?
如图所示,一带电的小球从P点自由下落,P点距场区边界MN高为h,边界MN下方有方向竖直向下、电场场强为E的匀强电场,同时还有匀强磁场,小球从边界上的a点进入电场与磁场的复合场后,恰能作匀速圆周运动,并从边界上的b点穿出,已知ab=L,求:(1)该匀强磁场的磁感强度B的大小和方向;(2)小球从P经a至b时,共需时间为多少?
如图所示,有一磁感应强度B=9.1×10-4T的匀强磁场,C、D为垂直于磁场的同一平面内的两点,它们之间的距离l=0.05m.今有一电子在此磁场中运动,它经过C点时的速度υ的方向和磁场方向垂直.且与CD间的夹角α=30°.(电子的质量m=9.1×10-31kg,电子的电量e=1.6×10-19C)问:(1)若此电子在运动中后来又经过了D点,则它的速度v应是多大?(2)电子从C点到D点所用的时间是多少?
如图所示,空间存在范围足够大的竖直向下的匀强电场,电场强度大小E =l.0×10-4v/m,在绝缘地板上固定有一带正电的小圆环A。初始时,带正电的绝缘小球B静止在圆环A的圆心正上方,B的电荷量为g= 9×10-7C,且B电荷量始终保持不变。始终不带电的绝缘小球c从距离B为x0= 0.9m的正上方自由下落,它与B发生对心碰撞,碰后不粘连但立即与B一起竖直向下运动。它们到达最低点后(未接触绝缘地板及小圆环A)又向上运动,当C、B刚好分离时它们不再上升。已知初始时,B离A圆心的高度r= 0.3m.绝缘小球B、C均可以视为质点,且质量相等,圆环A可看作电量集中在圆心处电荷量也为q =9×l0-7C的点电荷,静电引力常量k=9×109Nm2/C2.(g取10m/s2)。求:(l)试求B球质量m;(2)从碰后到刚好分离过程中A对B的库仑力所做的功。