如图8所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.以拱桥的最高点为原点建立如图的坐标系,求抛物线的解析式;若洪水到来时,水位以每小时m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶.
已知,且为锐角,求的值 。
如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是第二象限的抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)当点P运动到什么位置时,△PAB的面积最大?最大面积是多少?(3)当(2)中点P运动到△PAB的面积最大时,x轴上是否存在点D,使△PDB的周长最小,若存在,求出点D的坐标,若不存在。请说明理由。
已知二次函数y=x2﹣2(m+1)x+m2+5=0的图像过(a,0)和(b,0).(1)若(a﹣1)(b﹣1)=28,求m的值;(2)已知等腰△ABC一边长为7,若a、b旳值恰好是△ABC另外两边的边长,求这个三角形的周长.
某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的 办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.
如图, 某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽。