(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(文)已知数列中,(1)求证数列不是等比数列,并求该数列的通项公式;(2)求数列的前项和;(3)设数列的前项和为,若对任意恒成立,求的最小值.
(本小题满分12分)如图,平面为圆柱的轴截面,点为底面圆周上异于的任意一点.(1)求证:平面;(2)若为的中点,求证:平面.
(本小题满分12分)某校高三文科(1)班学生参加“大联考”,其数学成绩(已折合成百分制)的频率分布直方图如图所示,其中成绩分布区间为,,,,,,现已知成绩落在的有人.(1)求该校高三文科(1)班参加“大联考”的总人数;(2)根据频率分布直方图,估计该班此次数学成绩的平均分(可用中值代替各组数据的平均值);(3)现要从成绩在和的学生中共选人参加某项座谈会,求人来自于同一分数段的概率.
(本小题满分12分)设的内角所对边的长分别是,且.(1)求的值;(2)若的面积为,求的值.
(本小题满分14分)已知函数(为自然对数的底数).(Ⅰ)求函数的单调区间;(Ⅱ)若,的导数在上是增函数,求实数b的最大值;(Ⅲ)求证:对一切正整数均成立.
(本小题满分12分)设正项数列的前项和为,且,,数列满足,为数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)若不等式对任意的恒成立,求实数的取值范围.