如图所示,将一根长为L的不可伸长的轻质绳子分成等长的两段,绳子的一端悬挂于水平天花板上,另一端共同吊起一个重力为G的物体P并处于静止状态,试求:若绳子与天花板的夹角为θ,求绳子张力的大小;若绳子的最大承受张力为T0=5G/6,要保证绳子不被拉断,求天花板上两悬挂点距离的取值要求。
为了研究过山车的原理,某物理小组提出了下列的设想:取一个与水平方向夹角为,长为的倾斜轨道AB,通过微小圆弧与长为的水平轨道BC相连,然后在C处设计一个竖直完整的光滑圆轨道,出口为水平轨道D,如图所示。现将一个小球从距A点高为h="0.9" m的水平台面上以一定的初速度水平弹出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。已知小球与AB和BC间的动摩擦因数均为。取10m/s2,求: (1)小球初速度的大小; (2)小球滑过C点时的速率; (3)要使小球不离开轨道,则竖直圆弧轨道的半径应该满足什么条件。
)如图,三个质量相同的滑块A、B、C,间隔相等地静置于同一水平轨道上。现给滑块A向右的初速度,一段时间后A与B发生碰撞,碰后A、B分别以、的速度向右运动,B再与C发生碰撞,碰后B、C粘在一起向右运动。滑块A、B与轨道间的动摩擦因数为同一恒定值。两次碰撞时间均极短。求B、C碰后瞬间共同速度的大小。
半径为R、介质折射率为n的透明圆柱体,过其轴线OO’的截面如图所示。位于截面所在平面内的一细束光线,以角i0由O点入射,折射光线由上边界的A点射出。当光线在O点的入射角减小至某一值时,折射光线在上边界的B点恰好发生全反射。求A、B两点间的距离。
如图所示,两气缸AB粗细均匀,等高且内壁光滑,其下部由体积可忽略的细管连通;A的直径为B的2倍,A上端封闭,B上端与大气连通;两气缸除A顶部导热外,其余部分均绝热。两气缸中各有一厚度可忽略的绝热轻活塞a、b,活塞下方充有氮气,活塞a上方充有氧气;当大气压为P0,外界和气缸内气体温度均为7℃且平衡时,活塞a离气缸顶的距离是气缸高度的,活塞b在气缸的正中央。 (ⅰ)现通过电阻丝缓慢加热氮气,当活塞b升至顶部时,求氮气的温度; (ⅱ)继续缓慢加热,使活塞a上升,当活塞a上升的距离是气缸高度的时,求氧气的压强。
如图所示,质量2.3kg的物块静止在水平面上,用力F与水平方向成="37" 角拉动物块,力F作用时间内物块的速度图像如图,2s末撤去力F已知物块与水平面间的动摩擦因数= 0.2,sin 37 = 0.6,cos37 = 0.8.g取l0 .求: (1)力F的大小; (2)撤去力F后物块运动的时间和位移.