如图所示,在倾角θ=30°的斜面上有一块竖直放置的挡板,在挡板和斜面之间放有一个光滑圆球,当系统静止时档板上的压力传感器显示压力为20N,试求:球对斜面的压力和圆球的重量。要让挡板压力为零,整个装置在水平方向上将怎样动?
如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧。两滑块从弧形轨道上的某一高度由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块A沿圆形轨道运动通过轨道最高点时对轨道的压力大小恰等于其所受重力的大小。已知圆形轨道的半径R=0.60m,滑块A的质量mA=0.16kg,滑块B的质量mB=0.04kg,两滑块开始下滑时距圆形轨道底端的高度h=0.80m,重力加速度g取10m/s2,空气阻力可忽略不计。求: (1)A、B两滑块一起运动到圆形轨道最低点时速度的大小; (2)滑块A被弹簧弹开时的速度大小; (3)弹簧在将两滑块弹开的过程中释放的弹性势能。
如图所示,倾角的斜面底端B平滑连接着半径r=0.40m的竖直光滑圆轨道。质量m=0.50kg的小物块,从距地面h=2.7m处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数=0.25,求:(sin37=0.6,cos37=0.8,g=10m/s2) (1)(5)物块滑到斜面底端B时的速度大小。 (2)(7)物块沿圆轨道运动到最高点A后在空中做平抛运动落在OB水平面上,已知平抛运动水平位移为1.8m,求物块运动至A点时对圆轨道的压力大小。
如图所示,跳台滑雪运动员经过一段加速滑行后从O点水平飞出,经3.0s落到斜坡上的A点。已知O点是斜坡的起点,斜坡与水平面的夹角=37,运动员的质量m=50kg。不计空气阻力。(取sin37=0.60,cos37=0.80;g取10m/s2)求 (1)(5)A点与O点的距离L; (2)(5)运动员离开O点时的速度大小。
如图1所示,水平直线PQ下方有竖直向上的匀强电场,上方有垂直纸面方向的磁场,其磁感应强度B随时间的变化规律如图2所示(磁场的变化周期T=2.4×10-5s)。现有质量带电量为的点电荷,在电场中的O点由静止释放,不计电荷的重力。粒子经t0=第一次以的速度通过PQ,并进入上方的磁场中。取磁场垂直向外方向为正,并以粒子第一次通过PQ时为t=0时刻。(本题中取,重力加速度)。试求: ⑴ 电场强度E的大小; ⑵ 时刻电荷与O点的水平距离; ⑶ 如果在O点右方d=67.5cm处有一垂直于PQ的足够大的挡板,求电荷从开始运动到碰到挡板所需的时间。(保留三位有效数字)
如图所示,电阻可忽略不计的光滑水平轨道,导轨间距L=1m,在导轨左端接阻值R=0.3Ω的电阻。在导轨框内有与轨轨平面垂直的有界匀强磁场,磁场边界为矩形区域cdef,其中cd、ef与导轨垂直,磁场宽度刚好等于轨轨间距L,磁场长度s=1m,磁感应强度B=0.5T。一质量为m=1kg,电阻r="0.2" Ω的金属导体棒MN垂直放置于导轨上,且与导轨接触良好。现对金属棒施以垂直于导轨的水平外力F,金属棒从磁场的左边界cd处由静止开始以加速度a=0.4m/s2作匀加速运动。 (1) 推导出水平拉力F随时间t变化的关系式; (2) 力F作用一段时间t1后撤去力F;若已知撤去F后金属棒的速度v随位移x的变化关系为(v0为撤去F时金属棒速度),并且金属棒运动到ef处时速度恰好为零,则外力F作用的时间t1为多少? (3) 若在金属棒离开磁场区域前撤出外力F,试定性画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.(直接画图,不需要进行有关推导)