如图所示,BCDG是光滑绝缘的3/4圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中,现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g。若滑块从水平轨道上距离B点s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时,受到轨道的作用力大小;改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小。
如图所示,匀强电场场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里。质量m=1kg的带正电小物体A,从M点沿粗糙、绝缘的竖直墙壁无初速下滑,它滑行h=0.8m到N点时脱离墙壁做曲线运动,在通过P点瞬时,A受力平衡,此时其速度与水平方向成θ=45°角,且P点与M点的高度差为H=1.6m,当地重力加速度g取10m/s2。求:(1)A沿墙壁下滑时,克服摩擦力做的功Wf;(2)P点与M点的水平距离s。
如图所示,一电子(质量为m,电量绝对值为e)处于电压为U的水平加速电场的左极板A内侧,在电场力作用下由静止开始运动,然后穿过极板B中间的小孔在距水平极板M、N等距处垂直进入板间的匀强偏转电场。若偏转电场的两极板间距为d,板长为l,求:(1)电子刚进入偏转电场时的速度v0;(2)要使电子能从平行极板M、N间飞出,两个极板间所能加的最大偏转电压Umax′。
如图所示电路,R3=12Ω,当滑动变阻器R1调到6Ω时,电源的总功率为P=63W,输出功率为P出=54W,电源的内电阻为r=1Ω。求电源电动势E和流过滑动变阻器R1的电流I1。
相距L="1.5" m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒和质量为m2="0.27kg" 的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方问竖直向下,两处磁场磁感应强度大小相同。棒光滑,cd棒与导轨间的动摩擦因数为,两棒总电阻为1.8Ω,导轨电阻不计。ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd捧也由静止释放。(取10m/s2) (1)求出磁感应强度B的大小和ab棒加速度的大小;(2)已知在2s内外力F做功40J,求这一过程中两金属棒产生的总焦耳热;(3)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间,并在图(c)中定性画出cd棒所受摩擦力随时间变化的图像。
平面直角坐标系中,第1象限存在沿轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度大小为B。一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度垂直于轴射入电场,经轴上的N点与轴正方向成60º角射入磁场,最后从轴负半轴上的P点与轴正方向成60º角射出磁场,如图所示。不计粒子重力,求: (1)粒子在磁场中运动的轨道半径R; (2)粒子从M点运动到P点的总时间; (3)匀强电场的场强大小E。