长为L的平行金属板水平放置,两极板带等量的异种电荷,板间形成匀强电场,平行金属板的右侧有如下图所示的匀强磁场。一个带电为+q、质量为m的带电粒子,以初速v0紧贴上板垂直于电场线方向进入该电场,刚好从下板边缘射出,射出时末速度恰与下板成30o角,出磁场时刚好紧贴上板右边缘,不计粒子重力,求:两板间的距离;匀强电场的场强与匀强磁场的磁感应强度。
如图所示, xoy为空间直角坐标系,PQ与y轴正方向成θ=30°角。在第四象限和第一象限的xoQ区域存在磁感应强度为B的匀强磁场,在Poy区域存在足够大的匀强电场,电场方向与PQ平行,一个带电荷量为+q,质量为m的带电粒子从-y轴上的 A(0,-L)点,平行于x轴方向射入匀强磁场,离开磁场时速度方向恰与PQ垂直,粒子在匀强电场中经时间后再次经过x轴, 粒子重力忽略不计。求:从粒子开始进入磁场到刚进入电场的时间;匀强电场的电场强度E的大小。
如图甲所示,空间存在一宽度为2L有界匀强磁场,磁场方向垂直纸面向里。在光滑绝缘水平面内有一边长为L的正方形金属线框,其质量m=1kg、电阻R=4Ω,在水平向左的外力F作用下,以初速度v0=4m/s匀减速进入磁场,线框平面与磁场垂直,外力F大小随时间t变化的图线如图乙所示。以线框右边刚进入磁场时开始计时,求:匀强磁场的磁感应强度B;线框进入磁场的过程中,通过线框的电荷量q;判断线框能否从右侧离开磁场?说明理由。
如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平, O点为球心,碗的内表面及碗口光滑。右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°。一根不可伸长的不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮两端上,线的两端分别系有可视为质点的小球m1和m2,且m1>m2。开始时m1恰在右端碗口水平直径A处, m2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直。当m1由静止释放运动到圆心O的正下方B点时细绳突然断开,不计细绳断开瞬间的能量损失。求小球m2沿斜面上升的最大距离s;若已知细绳断开后小球m1沿碗的内侧上升的最大高度为R/2,求=?
一宠物毛毛狗“乐乐”在玩耍时不慎从离地h1=19.5m高层阳台无初速度竖直掉下,当时刚好是无风天气,设它的质量m=2kg,在“乐乐”开始掉下的同时,几乎在同一时刻刚好被地面上的一位保安发现并奔跑到达楼下,奔跑过程用时2.5s,恰好在距地面高度为h2=1.5m处接住“乐乐”, “乐乐”缓冲到地面时速度恰好为零,设“乐乐”下落过程中空气阻力为其重力的0.6倍,缓冲过程中空气阻力为其重力的0.2倍,重力加速度g=10m/s2。求:为了营救“乐乐”允许保安最长的反应时间;在缓冲过程中保安对“乐乐”做的功。
在如图所示的装置中,电源电动势为E,内阻不计,定值电阻为R1,滑动变阻器总电阻为R2,置于真空中的平行板电容器水平放置,极板间距为d。处在电容器中的油滴A恰好静止不动,此时滑动变阻器的滑片P位于R2的中点位置。求此时电容器两极板间的电压;确定该油滴的带电电性以及油滴所带电荷量q与质量m的比值;现将滑动变阻器的滑片P由中点迅速向上滑到某位置,使电容器上的电荷量变化了Q1,油滴运动时间为t,再将滑片从该位置迅速向下滑动到另一位置,使电容器上的电荷量又变化了Q2,当油滴又运动了2t的时间时,恰好回到原来的静止位置。设油滴在运动过程中未与极板接触,滑动变阻器滑动所用时间与电容器充电、放电所用时间均忽略不计。则两次电荷量的变化量Q1与Q2的比值为多少?