长为L的平行金属板水平放置,两极板带等量的异种电荷,板间形成匀强电场,平行金属板的右侧有如下图所示的匀强磁场。一个带电为+q、质量为m的带电粒子,以初速v0紧贴上板垂直于电场线方向进入该电场,刚好从下板边缘射出,射出时末速度恰与下板成30o角,出磁场时刚好紧贴上板右边缘,不计粒子重力,求:两板间的距离;匀强电场的场强与匀强磁场的磁感应强度。
如图所示,一个人用一根长1m,只能承受46N拉力的绳子,拴着一个质量为1kg的小球,在竖直平面内做圆周运动,已知圆心O离地面高h为6m,转动中小球在最低点时绳子断了。(g取)(1)绳子断时小球运动的角速度多大?(2)绳断后,小球落地点与抛出点间的水平距离。
如图所示,两根足够长的平行金属导轨MN、PQ与水平面的夹角为α=30°,导轨光滑且电阻不计,导轨处在垂直导轨平面向上的有界匀强磁场中. 两根电阻都为R=2Ω、质量都为m=0.2kg的完全相同的细金属棒ab和cd垂直导轨并排靠紧的放置在导轨上,与磁场上边界距离为x=1.6m,有界匀强磁场宽度为3x=4.8m.先将金属棒ab由静止释放,金属棒ab刚进入磁场就恰好做匀速运动,此时立即由静止释放金属棒cd,金属棒cd在出磁场前已做匀速运动.两金属棒在下滑过程中与导轨接触始终良好(取重力加速度g=10m/s2).求:(1)金属棒ab刚进入磁场时棒中电流I;(2)金属棒cd在磁场中运动的过程中通过回路某一截面的电量q;(3)两根金属棒全部通过磁场的过程中回路产生的焦耳热Q.
如图所示,在直角坐标系xoy的第一、四象限区域内存在两个有界的匀强磁场:垂直纸面向外的匀强磁场Ⅰ、垂直纸面向里的匀强磁场Ⅱ,O、M、P、Q为磁场边界和x轴的交点,OM=MP=L.在第三象限存在沿y轴正向的匀强 电场. 一质量为带电量为的带电粒子从电场中坐标为(-2L,-L)的点以速度v0沿+x方向出,恰好经过原点O处射入区域Ⅰ又从M点射出区域Ⅰ(粒子的重力忽略不计).(1)求第三象限匀强电场场强E的大小;(2)求区域Ⅰ内匀强磁场磁感应强度B的大小;(3)如带电粒子能再次回到原点O,问区域Ⅱ内磁场的宽度至少为多少?粒子两次经过原点O的时间间隔为多少?
水上滑梯可简化成如图所示的模型:倾角为θ=37°斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7.0m,BC长d=2.0m,端点C距水面的高度h=1.0m. 一质量m=50kg的运动员从滑道起点A点无初速地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.10.(取重力加速度g=10m/s2,cos37°=0.8,sin37°=0.6,运动员在运动过程中可视为质点) (1)求运动员沿AB下滑时加速度的大小a;(2) 求运动员从A滑到C的过程中克服摩擦力所做的功W和到达C点时速度的大小υ;(3)保持水平滑道端点在同一竖直线上,调节水平滑道高度h和长度d到图中B′C′位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B′C′距水面的高度h′.
一对正负电子相遇后转化为光子的过程被称之为湮灭. ①静止的一对正负电子湮灭会产生两个同频率的光子,且两个光子呈180°背道而驰,这是为什么?②电子质量m=9.1×10-31kg,真空中光速c=3×108m/s,普朗克恒量为h=6.63×10-34J·s,求一对静止的正负电子湮灭后产生的光子的频率(结果保留两位有效数字).