右下图为一示波管中的水平偏转极板,已知极板的长度为L,两板距离为d,所加偏转电压为U,且下板带正电;若一束电子以初速v0沿极板的中线进入偏转电场,最终电子从P点飞出。设电子的质量为m,电量为e ,不计电子的重力。试求电子在极板间运动的加速度大小;电子通过极板发生的偏转距离y;若规定图中的上极板电势为零,试求P点的电势。
如图所示,质量均为m、可视为质点的A.B两物体,B物体静止在水平地面上的N点,左边有竖直墙壁,右边在P点与固定的半径为R的1/4光滑圆弧槽相切,MN=NP=R。物体A与水平面间的摩擦力可忽略不计,物体B与水平面间的动摩擦因数0.5。现让A物体以水平初速度v0(v0未知)在水平地面上向右运动,与物体B发生第一次碰撞后,物体B恰能上升到圆弧槽最高点Q,若物体A与竖直墙壁间、物体A与物体B间发生的都是弹性碰撞,不计空气阻力,重力加速度为g,求:(1)物体A的初速度v0;(2)物体AB最终停止运动时AB间的距离L。
如图所示,折射率为n=的两面平行的玻璃砖,下表面涂有反射物质,右端垂直地放置一标尺MN。一细光束以角度入射到玻璃砖的上表面,会在标尺上的两个位置出现光点,若两光点之间的距离为a(图中未画出),求光通过玻璃砖的时间t(设光在真空中的速度 为c,不考虑细光速在玻璃砖下表面的第二次反射)。
如图所示,在两端封闭粗细均匀的竖直长管道内,用一可自由移动的活塞A封闭体积相等的两部分气体。开始时管道内气体温度都为T0 =" 500" K,下部分气体的压强p0=1.25×105 Pa,活塞质量m = 0.25 kg,管道的内径横截面积S =1cm2。现保持管道下部分气体温度不变,上部分气体温度缓慢降至T,最终管道内上部分气体体积变为原来的,若不计活塞与管道壁间的摩擦,g =" 10" m/s2,求此时上部分气体的温度T。
如图所示,在oxy坐标平面内有一矩形区域ABCD,AD边在x轴上,ABCD区域恰能均分成边长为L的三个正方形区域I、II、III,区域I、III内存大场强大小均为E的匀强电场,场强方向如图所示,区域II内无电场,(不计电子所受重力和空气阻力)。(1)在AB边的中点由静止释放一电了,求电子离开ABCD区域的位置到D点的距离d;(2)在I区域内适当位置由静止释放电子,电子恰从D点离开ABCD区域,求释放位置的纵坐标y与横坐标x之间的关系;(3)若将左侧电场III整体水平向右移动L/n()的距离(C.D点不随电场移动),仍在I区域内适当位置由静止释放电子,电子也恰从D点离开ABCD区域,释放位置的纵坐标与横坐标之间的关系。
如图所示,一轻绳悬挂着粗细均匀且足够长的棒,棒下端离地面高为h,上端套着一个细环,环和棒的质量均为m,设环和棒间的最大静摩擦力等于滑动摩擦力,且满足最大静摩擦力f=kmg(k为大于1的常数,g为重力加速度),某时刻突然断开轻绳,环和棒一起自由下落,棒每次与地面碰撞时与地面接触的时间极短,且无机械能损失,棒始终保持竖直直立状态,不计空气阻力,求:(1)棒第一次与地面碰撞后弹起上升的过程中,环的加速度大小a;(2)从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s;(3)从断开轻绳到棒和环都静止的过程中,环相对于棒滑动的距离L。